Search results for: answer classification
313 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
Abstract:
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.
Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200312 Household Indebtedness Risks in the Czech Republic
Authors: Jindřiška Šedová
Abstract:
In the past 20 years the economy of the Czech Republic has experienced substantial changes. In the 1990s the development was affected by the transformation which sought to establish the right conditions for privatization and creation of elementary market relations. In the last decade the characteristic elements such as private ownership and corresponding institutional framework have been strengthened. This development was marked by the accession of the Czech Republic to the EU. The Czech Republic is striving to reduce the difference between its level of economic development and the quality of institutional framework in comparison with other developed countries. The process of finding the adequate solutions has been hampered by the negative impact of the world financial crisis on the Czech Republic and the standard of living of its inhabitants. This contribution seeks to address the question of whether and to which extent the economic development of the transitive Czech economy is affected by the change in behaviour of households and their tendency to consumption, i.e. in the sense of reduction or increase in demand for goods and services. It aims to verify whether the increasing trend of household indebtedness and decreasing trend of saving pose a significant risk in the Czech Republic. At a general level the analysis aims to contribute to finding an answer to the question of whether the debt increase of Czech households is connected to the risk of "eating through" the borrowed money and whether Czech households risk falling into a debt trap. In addition to household indebtedness risks in the Czech Republic the analysis will focus on identification of specifics of the transformation phase of the Czech economy in comparison with the EU countries, or selected OECD countries.Keywords: household indebtedness, household consumption, credits, financial literacy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800311 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.
Keywords: Feature fusion, image retrieval, membership function, normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344310 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745309 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848308 Analyzing the Usage of Social Media: A Study on Elderly in Malaysia
Authors: Chan Eang Teng, Tang Mui Joo
Abstract:
In the beginning of the prevalence of social media, it would be an obvious trend that the young adult age group has the highest population among the users on social media. However, apart from the age group of the users are becoming younger and younger, the elderly group has become a new force on social media, and this age group has increased rapidly. On top of that, the influence of social media towards the elderly is becoming more significant and it is even trending among them. This is because basic computer knowledge is not instilled into their life when they were young. This age group tends to be engrossed more than the young as this is something new for them, and they have the mindset that it is a new platform to approach things, and they tend to be more engrossed when they start getting in touch with the social media. Generally, most of the social media has been accepted and accessed by teenagers and young adult, but it is reasonable to believe that the social media is not really accepted among the elderly. Surprisingly, the elderlies are more addicted to the social media than the teenagers. Therefore, this study is to determine and understand the relationship between the elderly and social media, and how they employ social media in their lives. An online survey on 200 elderly aged 45-80 and an interview with a media expert are conducted to answer the main questions in the research paper. Uses and Gratification Approach is employed in theoretical framework. Finding revealed that majority of the respondents use social media to connect with family, friends, and for leisure purposes. The finding concluded that the elderly use social media differently according to their needs and wants which is in par with the highlight of Uses and Gratification theory. Considering the significantly large role social media plays in our culture and daily life today, the finding will shed some light on the effect of social media on the elderly or senior citizens who are usually relegated into a minority group in today’s age where the internet and social media are of great importance to our society and humanity in general. This may also serve to be useful in understanding behavioral patterns and preference in terms of social media usage among the elderly.
Keywords: Elderly, Facebook, Malaysia, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5489307 Classification of Precipitation Types Detected in Malaysia
Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly
Abstract:
The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.Keywords: Stratiform, convective, tropical region, attenuation radar reflectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444306 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260305 Effective Density for the Classification of Transport Activity Centers
Authors: Dubbale Daniel A., Tsutsumi J.
Abstract:
This research work takes a different approach in the discussion of urban form impacts on transport planning and auto dependency. Concentrated density represented by effective density explains auto dependency better than the conventional density and it is proved to be a realistic density representative for the urban transportation analysis. Model analysis reveals that effective density is influenced by the shopping accessibility index as well as job density factor. It is also combined with the job access variable to classify four levels of Transport Activity Centers (TACs) in Okinawa, Japan. Trip attraction capacity and levels of the newly classified TACs was found agreeable with the amount of daily trips attracted to each center. The trip attraction data set was drawn from a 2007 Okinawa personal trip survey. This research suggests a planning methodology which guides logical transport supply routes and concentrated local development schemes.Keywords: Effective density, urban form, auto-dependency, transport activity centers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515304 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.
Keywords: GraphViz representation, semantic relatedness, similarity measurement, WordNet similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836303 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters
Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz
Abstract:
Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652302 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744301 Identifying Relationships between Technology-based Services and ICTs: A Patent Analysis Approach
Authors: Chulhyun Kim, Seungkyum Kim, Moon-soo Kim
Abstract:
A variety of new technology-based services have emerged with the development of Information and Communication Technologies (ICTs). Since technology-based services have technology-driven characteristics, the identification of relationships between technology-based services and ICTs would give meaningful implications. Thus, this paper proposes an approach for identifying the relationships between technology-based services and ICTs by analyzing patent documents. First, business model (BM) patents are classified into relevant service categories. Second, patent citation analysis is conducted to investigate the technological linkage and impacts between technology-based services and ICTs at macro level. Third, as a micro level analysis, patent co-classification analysis is employed to identify the technological linkage and coverage. The proposed approach could guide and help managers and designers of technology-based services to discover the opportunity of the development of new technology-based services in emerging service sectors.Keywords: Technology-based Services, Information and Communication Technology (ICT), Business Model (BM) Patent, Patent Analysis, Technological Relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989300 Semantic Indexing Approach of a Corpora Based On Ontology
Authors: Mohammed Erritali
Abstract:
The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.Keywords: Semantic, indexing, corpora, WordNet, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368299 Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion
Authors: Yasmin Mohd Yacob, Harsa A. Mat Sakim, Nor Ashidi Mat Isa
Abstract:
Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.
Keywords: Feature ranking, decision tree, hierarchical cluster, Manhattan distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968298 Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices
Authors: José A. D. Machuca, Bernabé Escobar-Pérez, Pedro Garrido Vega, Darkys E. Lujan García
Abstract:
Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.Keywords: Advanced Production Practices, Financial Indicators, Non-Financial Indicators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507297 Mining Image Features in an Automatic Two-Dimensional Shape Recognition System
Authors: R. A. Salam, M.A. Rodrigues
Abstract:
The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.Keywords: Image mining, feature selection, shape recognition, peak measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458296 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325295 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images
Authors: Vassilis S. Kodogiannis, John N. Lygouras
Abstract:
In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752294 Ontology-Driven Generation of Radiation Protection Procedures
Authors: Chamseddine Barki, Salam Labidi, Hanen Boussi Rahmouni
Abstract:
In this article, we present the principle and suitable methodology for the design of a medical ontology that highlights the radiological and dosimetric knowledge, applied in diagnostic radiology and radiation-therapy. Our ontology, which we named «Onto.Rap», is the subject of radiation protection in medical and radiology centers by providing a standardized regulatory oversight. Thanks to its added values of knowledge-sharing, reuse and the ease of maintenance, this ontology tends to solve many problems. Of which we name the confusion between radiological procedures a practitioner might face while performing a patient radiological exam. Adding to it, the difficulties they might have in interpreting applicable patient radioprotection standards. Here, the ontology, thanks to its concepts simplification and expressiveness capabilities, can ensure an efficient classification of radiological procedures. It also provides an explicit representation of the relations between the different components of the studied concept. In fact, an ontology based-radioprotection expert system, when used in radiological center, could implement systematic radioprotection best practices during patient exam and a regulatory compliance service auditing afterwards.Keywords: Ontology, radiology, medicine, knowledge, radiation protection, audit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289293 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180292 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280291 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944290 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902289 Quantum-Like Approach for Deriving a Theory Describing the Concept of Interpretation
Authors: Yehuda Roth
Abstract:
In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.
Keywords: Interpretation, ambiguous images, data reception, state matching, classification, determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188288 Lifelong Education for Teachers: A Tool for Achieving Effective Teaching and Learning in Secondary Schools in Benue State, Nigeria
Authors: P. I. Adzongo, O. A. Aloga
Abstract:
The purpose of the study was to examine lifelong education for teachers as a tool for achieving effective teaching and learning. Lifelong education enhances social inclusion, personal development, citizenship, employability, teaching and learning, community and the nation. It is imperative that the teacher needs to update his knowledge regularly to be able to perform optimally, since he has a major position in the inculcation of desirable elements in students, and the challenges of lifelong education were also discussed. Descriptive survey design was adopted for the study. A simple random sampling technique was used to select 80 teachers as sample from a population of 105 senior secondary school teachers in Makurdi Local Government Area of Benue State. A 20-item self designed questionnaire subjected to expert validation and reliability was used to collect data. The reliability Alpha coefficient of 0.87 was established using Cronbach’s Alpha technique, mean scores and standard deviation were used to answer the 2 research questions while chi-square was used to analyse data for the 2 null hypotheses, which states that lifelong education for teachers is not a significant tool for achieving effective teaching and lifelong education for teachers does not significantly impact on effective learning. The findings of the study revealed that, lifelong education for teachers can be used as a tool for achieving effective teaching and learning, and the study recommended among others that government, organizations and individuals should in collaboration put lifelong education programmes for teachers on the priority list. The paper concluded that the strategic position of lifelong education for teachers towards enhanced teaching, learning and the production of quality manpower in the society makes it imperative for all hands to be on “deck” to support the programme financially and otherwise.Keywords: Lifelong Education, Tool, Effective Teaching and Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466287 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway
Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri
Abstract:
In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.
Keywords: Sediment, lime, cement, roadway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936286 A Black-box Approach for Response Quality Evaluation of Conversational Agent Systems
Authors: Ong Sing Goh, C. Ardil, Wilson Wong, Chun Che Fung
Abstract:
The evaluation of conversational agents or chatterbots question answering systems is a major research area that needs much attention. Before the rise of domain-oriented conversational agents based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when chatterbots began to become more domain specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time to achieve high quality responses. This paper discusses the inappropriateness of the existing measures for response quality evaluation and the call for new standard measures and related considerations are brought forward. As a short-term solution for evaluating response quality of conversational agents, and to demonstrate the challenges in evaluating systems of different nature, this research proposes a blackbox approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems, AnswerBus, START and AINI.
Keywords: Evaluation, conversational agents, Response Quality, chatterbots
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927285 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.
Keywords: Color space, neural network, random forest, skin detection, statistical feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953284 Automatic Extraction of Features and Opinion-Oriented Sentences from Customer Reviews
Authors: Khairullah Khan, Baharum B. Baharudin, Aurangzeb Khan, Fazal_e_Malik
Abstract:
Opinion extraction about products from customer reviews is becoming an interesting area of research. Customer reviews about products are nowadays available from blogs and review sites. Also tools are being developed for extraction of opinion from these reviews to help the user as well merchants to track the most suitable choice of product. Therefore efficient method and techniques are needed to extract opinions from review and blogs. As reviews of products mostly contains discussion about the features, functions and services, therefore, efficient techniques are required to extract user comments about the desired features, functions and services. In this paper we have proposed a novel idea to find features of product from user review in an efficient way. Our focus in this paper is to get the features and opinion-oriented words about products from text through auxiliary verbs (AV) {is, was, are, were, has, have, had}. From the results of our experiments we found that 82% of features and 85% of opinion-oriented sentences include AVs. Thus these AVs are good indicators of features and opinion orientation in customer reviews.Keywords: Classification, Customer Reviews, Helping Verbs, Opinion Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096