Search results for: Forensic anthropology population data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8137

Search results for: Forensic anthropology population data

7147 Identifying Neighborhoods at Potential Risk of Food Insecurity in Rural British Columbia

Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly

Abstract:

Substantial research has indicated that socioeconomic and demographic characteristics’ of neighborhoods are strong determinants of food security. The aim of this study was to develop a Food Insecurity Neighborhood Index (FINI) based on the associated socioeconomic and demographic variables to identify the areas at potential risk of food insecurity in rural British Columbia (BC). Principle Component Analysis (PCA) technique was used to calculate the FINI for each rural Dissemination Area (DA) using the food security determinant variables from Canadian Census data. Using ArcGIS, the neighborhoods with the top quartile FINI values were classified as food insecure. The results of this study indicated that the most food insecure neighborhood with the highest FINI value of 99.1 was in the Bulkley-Nechako (central BC) area whereas the lowest FINI with the value of 2.97 was for a rural neighborhood in the Cowichan Valley area. In total, 98.049 (19%) of the rural population of British Columbians reside in high food insecure areas. Moreover, the distribution of food insecure neighborhoods was found to be strongly dependent on the degree of rurality in BC. In conclusion, the cluster of food insecure neighbourhoods was more pronounced in Central Coast, Mount Wadington, Peace River, Kootenay Boundary, and the Alberni-Clayoqout Regional Districts.

Keywords: Neighbourhood food insecurity index, socioeconomic and demographic determinants, principal component analysis, Canada Census, ArcGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
7146 Application of Data Envelopment Analysis to Assess Quality Management Efficiency

Authors: Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi

Abstract:

This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.

Keywords: Quality Management, Data Envelopment Analysis, Slack Based Measure, Efficiency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
7145 Prototype of a Federative Factory Data Management for the Support of Factory Planning Processes

Authors: Christian Mosch, Reiner Anderl, Antonio Álvaro de Assis Moura, Klaus Schützer

Abstract:

Due to short product life cycles, increasing variety of products and short cycles of leap innovations manufacturing companies have to increase the flexibility of factory structures. Flexibility of factory structures is based on defined factory planning processes in which product, process and resource data of various partial domains have to be considered. Thus factory planning processes can be characterized as iterative, interdisciplinary and participative processes [1]. To support interdisciplinary and participative character of planning processes, a federative factory data management (FFDM) as a holistic solution will be described. FFDM is already implemented in form of a prototype. The interim results of the development of FFDM will be shown in this paper. The principles are the extracting of product, process and resource data from documents of various partial domains providing as web services on a server. The described data can be requested by the factory planner by using a FFDM-browser.

Keywords: BRAGECRIM, Factory Planning Process, FactoryData Management, Web Services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
7144 The Necessity of Optimized Management on Surface Water Sources of Zayanderood Basin

Authors: A. Gandomkar, K. Fouladi

Abstract:

One of the efficient factors in comprehensive development of an area is to provide water sources and on the other hand the appropriate management of them. Population growth and nourishment security for such a population necessitate the achievement of constant development besides the reforming of traditional management in order to increase the profit of sources; In this case, the constant exploitation of sources for the next generations will be considered in this program. The achievement of this development without the consideration and possibility of water development will be too difficult. Zayanderood basin with 41500 areas in square kilometers contains 7 sub-basins and 20 units of hydrologic. In this basin area, from the entire environment descending, just a small part will enter into the river currents and the rest will be out of efficient usage by various ways. The most important surface current of this basin is Zayanderood River with 403 kilometers length which is originated from east slopes of Zagros mount and after draining of this basin area it will enter into Gaavkhooni pond. The existence of various sources and consumptions of water in Zayanderood basin, water transfer of the other basin areas into this basin, of course the contradiction between the upper and lower beneficiaries, the existence of worthwhile natural ecosystems such as Gaavkhooni swamp in this basin area and finally, the drought condition and lack of water in this area all necessitate the existence of comprehensive management of water sources in this central basin area of Iran as this method is a kind of management which considers the development and the management of water sources as an equilibrant way to increase the economical and social benefits. In this study, it is tried to survey the network of surface water sources of basin in upper and lower sections; at the most, according to the difficulties and deficiencies of an efficient management of water sources in this basin area, besides the difficulties of water draining and the destructive phenomenon of flood-water, the appropriate guidelines according to the region conditions are presented in order to prevent the deviation of water in upper sections and development of regions in lower sections of Zayanderood dam.

Keywords: Zayanderood Basin, Efficient Management, Hydrology Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
7143 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: Road Safety, Prediction, Accident, Model, Qatar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
7142 Analysis of a WDM System for Tanzania

Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch

Abstract:

Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.

Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
7141 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
7140 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
7139 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: Marginal gingivitis, cross-sectional, retrograde, prevalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
7138 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
7137 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
7136 Impact of Fixation Time on Subjective Video Quality Metric: a New Proposal for Lossy Compression Impairment Assessment

Authors: M. G. Albanesi, R. Amadeo

Abstract:

In this paper, a new approach for quality assessment tasks in lossy compressed digital video is proposed. The research activity is based on the visual fixation data recorded by an eye tracker. The method involved both a new paradigm for subjective quality evaluation and the subsequent statistical analysis to match subjective scores provided by the observer to the data obtained from the eye tracker experiments. The study brings improvements to the state of the art, as it solves some problems highlighted in literature. The experiments prove that data obtained from an eye tracker can be used to classify videos according to the level of impairment due to compression. The paper presents the methodology, the experimental results and their interpretation. Conclusions suggest that the eye tracker can be useful in quality assessment, if data are collected and analyzed in a proper way.

Keywords: eye tracker, video compression, video qualityassessment, visual attention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
7135 GPS Signal Correction to Improve Vehicle Location during Experimental Campaign

Authors: L. Della Ragione, G. Meccariello

Abstract:

In recent years in Italy the progress of the automobile industry, in the field of reduction of emissions values, is very remarkable. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars.

Keywords: Air pollution, Driving cycles, GPS signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
7134 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
7133 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
7132 Balanced k-Anonymization

Authors: Sabah S. Al-Fedaghi

Abstract:

The technique of k-anonymization has been proposed to obfuscate private data through associating it with at least k identities. This paper investigates the basic tabular structures that underline the notion of k-anonymization using cell suppression. These structures are studied under idealized conditions to identify the essential features of the k-anonymization notion. We optimize data kanonymization through requiring a minimum number of anonymized values that are balanced over all columns and rows. We study the relationship between the sizes of the anonymized tables, the value k, and the number of attributes. This study has a theoretical value through contributing to develop a mathematical foundation of the kanonymization concept. Its practical significance is still to be investigated.

Keywords: Balanced tables, k-anonymization, private data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
7131 A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems

Authors: Jorge Estudillo Ramirez, Saul E. Pomares Hernandez

Abstract:

Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.

Keywords: Multimedia, Distributed Systems, Partial Ordering, Temporal Synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
7130 The Analysis of Internet and Social Media Behaviors of the Students in the Higher School of Vocational and Technical Sciences

Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok

Abstract:

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer and internet technologies. While these developments occur in the world, Turkey that has a very large young population and whose electronic infrastructure rapidly improves has also been affected by these developments. Nowadays, mobile devices have become common and thus, it causes to increase data traffic in social networks. This study was carried out on students in the different age groups in Selcuk University Vocational School of Technical Sciences, the Department of Computer Technology. Students’ opinions about the use of internet and social media were obtained. The features such as using the Internet and social media skills, purposes, operating frequency, accessing facilities and tools, social life and effects on vocational education and so forth were explored. The positive effects and negative effects of both internet and social media use on the students in this department and findings are evaluated from different perspectives and results are obtained. In addition, relations and differences were found out statistically.

Keywords: Computer technologies, internet use, social network, higher vocational school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
7129 Materialized View Effect on Query Performance

Authors: Yusuf Ziya Ayık, Ferhat Kahveci

Abstract:

Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.

Keywords: Materialized view, pre-computation, query cost, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
7128 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plainsided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the requirement for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: Grouted Connection, Numerical Model, Offshore Structure, Wear, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
7127 Designing an Integrated Platform for Real-Time Recommendations Sharing among the Aged and People Living with Cancer

Authors: Adekunle O. Afolabi, Pekka Toivanen

Abstract:

The world is expected to experience growth in the number of ageing population, and this will bring about high cost of providing care for these valuable citizens. In addition, many of these live with chronic diseases that come with old age. Providing adequate care in the face of rising costs and dwindling personnel can be challenging. However, advances in technologies and emergence of the Internet of Things are providing a way to address these challenges while improving care giving. This study proposes the integration of recommendation systems into homecare to provide real-time recommendations for effective management of people receiving care at home and those living with chronic diseases. Using the simplified Training Logic Concept, stakeholders and requirements were identified. Specific requirements were gathered from people living with cancer. The solution designed has two components namely home and community, to enhance recommendations sharing for effective care giving. The community component of the design was implemented with the development of a mobile app called Recommendations Sharing Community for Aged and Chronically Ill People (ReSCAP). This component has illustrated the possibility of real-time recommendations, improved recommendations sharing among care receivers and between a physician and care receivers. Full implementation will increase access to health data for better care decision making.

Keywords: Recommendation systems, healthcare, internet of things, real-time, homecare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
7126 A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

Authors: Kamaraju.M, Lal Kishore.K, Tilak.A.V.N

Abstract:

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

Keywords: ASIP, Data transfer, Instruction set, Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
7125 Data Mining Applied to the Predictive Model of Triage System in Emergency Department

Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao

Abstract:

The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.

Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
7124 Dynamic Metadata Schemes in the Neutron and Photon Science Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata is one of the most important aspects for advancing data management practices within all research communities. Definitions and schemes of metadata are inter alia of particular significance in the domain of neutron and photon scattering experiments covering a broad area of different scientific disciplines. The demand of describing continuously evolving highly non-standardized experiments, including the resulting processed and published data, constitutes a considerable challenge for a static definition of metadata. Here, we present the concept of dynamic metadata for the neutron and photon scientific community, which enriches a static set of defined basic metadata. We explore the idea of dynamic metadata with the help of the use case of X-ray Photon Correlation Spectroscopy (XPCS), which is a synchrotron-based scattering technique that allows the investigation of nanoscale dynamic processes. It serves here as a demonstrator of how dynamic metadata can improve data acquisition, sharing, and analysis workflows. Our approach enables researchers to tailor metadata definitions dynamically and adapt them to the evolving demands of describing data and results from a diverse set of experiments. We demonstrate that dynamic metadata standards yield advantages that enhance data reproducibility, interoperability, and the dissemination of knowledge.

Keywords: Big data, metadata, schemas, XPCS, X-ray Photon Correlation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148
7123 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
7122 A Software Tool Design for Cerebral Infarction of MR Images

Authors: Kyoung-Jong Park, Woong-Gi Jeon, Hee-Cheol Kim, Dong-Eog Kim, Heung-Kook Choi

Abstract:

The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.

Keywords: Software tool design, Cerebral infarction, Brain MR image, Registration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
7121 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
7120 New Data Reuse Adaptive Filters with Noise Constraint

Authors: Young-Seok Choi

Abstract:

We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.

Keywords: Adaptive filter, data-reusing, least-mean square (LMS), affine projection (AP), noise constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
7119 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar

Abstract:

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.

Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
7118 The Influence of Gender on Job-Competencies Requirements of Chemical-Based Industries and Undergraduate-Competencies Acquisition of Chemists in South West, Nigeria

Authors: Rachael Olatoun Okunuga

Abstract:

Developing young people’s employability is a key policy issue for ensuring their successful transition to the labour market and their access to career oriented employment. The youths of today irrespective of their gender need to acquire the knowledge, skills and attitudes that will enable them to create or find jobs as well as cope with unpredictable labour market changes throughout their working lives. In a study carried out to determine the influence of gender on job-competencies requirements of chemical-based industries and undergraduate-competencies acquisition by chemists working in the industries, all chemistry graduates working in twenty (20) chemical-based industries that were randomly selected from six sectors of chemical-based industries in Lagos and Ogun States of Nigeria were administered with Job-competencies required and undergraduate-competencies acquired assessment questionnaire. The data were analysed using means and independent sample t-test. The findings revealed that the population of female chemists working in chemical-based industries is low compared with the number of male chemists; furthermore, job-competencies requirements are found not to be gender biased while there is no significant difference in undergraduate-competencies acquisition of male and female chemists. This suggests that females should be given the same opportunity of employment in chemical-based industries as their male counterparts. The study also revealed the level of acquisition of undergraduate competencies as related to the needs of chemicalbased industries.

Keywords: Acquired, attitude, employability, knowledge, required, skill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954