Search results for: Radial basis functionsneural networks
2004 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm
Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura
Abstract:
In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.
Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882003 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6312002 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays
Authors: Wenqin Wang, Shouming Zhong
Abstract:
This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.
Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232001 Comparisons of Antioxidant Activity and Bioactive Compounds of Dragon Fruit Peel from Various Drying Methods
Authors: L.Wiset, N. Poomsa-ad, V. Srilaong
Abstract:
The peel of dragon fruit is a byproduct left over after consuming. Normally, the use of plants as antioxidant source must be dried before further process. Therefore, the aim of this study is interesting to dry the peel by heat pump dryer (45 ºC) and fluidized bed dryer (110 º C) compared with the sun drying method. The sample with initial moisture content of about 85-91% wet basis was dried down to about 10% wet basis where it took 620 and 25 min for heat pump dryer and fluidized bed dryer, respectively. However, the sun drying took about 900 min to dry the peel. After that, sample was evaluated antioxidant activity, -carotene and betalains contents. The results found that the antioxidant activity and betalains contents of dried peel obtained from heat pump and fluidized bed dryings were significantly higher than that sun drying (p 0.05). Moreover, the drying by heat pump provided the highest -carotene content.
Keywords: Pitaya, betalains, β-carotene, antioxidant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48672000 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: BERT, chatbot, cryptocurrency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9831999 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14351998 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
Authors: Hazem M. El-Bakry
Abstract:
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.
Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18451997 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review
Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan
Abstract:
Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.
Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23571996 Understanding Health Behavior Using Social Network Analysis
Authors: Namrata Mishra
Abstract:
Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.Keywords: Health behaviors, social network analysis, directed graph, breadth first search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081995 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491994 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact
Authors: H. Aissa, L. Mouzai, M. Bouhadef
Abstract:
The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.
Keywords: Splash distribution, water drop, slope steepness, soil detachment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241993 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition
Authors: Hazem M. El-Bakry
Abstract:
Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371992 A Lifetime-Guaranteed Routing Scheme in Wireless Sensor Networks
Authors: Jae Keun Park, Sung Je Hong, Kyong Hoon Kim, Tae Heum Kang, Wan Yeon Lee
Abstract:
In this paper, we propose a routing scheme that guarantees the residual lifetime of wireless sensor networks where each sensor node operates with a limited budget of battery energy. The scheme maximizes the communications QoS while sustaining the residual battery lifetime of the network for a specified duration. Communication paths of wireless nodes are translated into a directed acyclic graph(DAG) and the maximum-flow algorithm is applied to the graph. The found maximum flow are assigned to sender nodes, so as to maximize their communication QoS. Based on assigned flows, the scheme determines the routing path and the transmission rate of data packet so that any sensor node on the path would not exhaust its battery energy before a specified duration.Keywords: Sensor network, battery, residual lifetime, routingscheme, QoS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331991 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.
Keywords: WSNs, sensor, routing protocols, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421990 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach
Authors: Uttam Vijay, Nitin Gupta
Abstract:
Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.
Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24751989 Power Optimization Techniques in FPGA Devices: A Combination of System- and Low-Levels
Authors: Pawel P. Czapski, Andrzej Sluzek
Abstract:
This paper presents preliminary results regarding system-level power awareness for FPGA implementations in wireless sensor networks. Re-configurability of field programmable gate arrays (FPGA) allows for significant flexibility in its applications to embedded systems. However, high power consumption in FPGA becomes a significant factor in design considerations. We present several ideas and their experimental verifications on how to optimize power consumption at high level of designing process while maintaining the same energy per operation (low-level methods can be used additionally). This paper demonstrates that it is possible to estimate feasible power consumption savings even at the high level of designing process. It is envisaged that our results can be also applied to other embedded systems applications, not limited to FPGA-based.
Keywords: Power optimization, FPGA, system-level designing, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311988 Trust Managementfor Pervasive Computing Environments
Authors: Denis Trcek
Abstract:
Trust is essential for further and wider acceptance of contemporary e-services. It was first addressed almost thirty years ago in Trusted Computer System Evaluation Criteria standard by the US DoD. But this and other proposed approaches of that period were actually solving security. Roughly some ten years ago, methodologies followed that addressed trust phenomenon at its core, and they were based on Bayesian statistics and its derivatives, while some approaches were based on game theory. However, trust is a manifestation of judgment and reasoning processes. It has to be dealt with in accordance with this fact and adequately supported in cyber environment. On the basis of the results in the field of psychology and our own findings, a methodology called qualitative algebra has been developed, which deals with so far overlooked elements of trust phenomenon. It complements existing methodologies and provides a basis for a practical technical solution that supports management of trust in contemporary computing environments. Such solution is also presented at the end of this paper.Keywords: internet security, trust management, multi-agent systems, reasoning and judgment, modeling and simulation, qualitativealgebra
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821987 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951986 Dynamic Threshold Adjustment Approach For Neural Networks
Authors: Hamza A. Ali, Waleed A. J. Rasheed
Abstract:
The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.
Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271985 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*
Authors: Jin Myoung Kim, Tae Ho Cho
Abstract:
Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.
Keywords: Heuristic search, key management, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841984 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.
Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651983 Three Tier Indoor Localization System for Digital Forensics
Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya
Abstract:
Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.
Keywords: Indoor localization, waterfall, digital forensics, tracking and cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421982 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011981 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13731980 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33011979 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12791978 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching
Authors: Vitalice K. Oduol, C. Ardil
Abstract:
The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.
Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931977 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate
Authors: Mogari I. Rapoo, Diteboho Xaba
Abstract:
This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.
Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631976 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.
Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271975 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175