Search results for: Moving vehicle detection.
1459 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531458 Morphological Characteristics and Development of the Estuary Area of Lam River, Vietnam
Authors: Hai Nguyen Tien
Abstract:
On the basis of the structure of alluvial sediments explained by echo sounding data and remote sensing images, the following results can be given: The estuary of Lam river from Ben Thuy Bridge (original word: Bến Thủy) to Cua Hoi (original word: Cửa Hội) is divided into three channels (location is calculated according to the river bank on the Nghe An Province, original word: Nghệ An): i) channel I (from Ben Thuy Bridge to Hung Hoa, original word: Hưng Hòa) is the branching river; ii) channel II (from Hung Hoa to Nghi Thai, original word: Nghi Thái)is a channel develops in a meandering direction with a concave side toward Ha Tinh Province (Hà Tĩnh); iii) channel III (from Nghi Thai to Cua Hoi)is a channel develops in a meandering direction with a concave side toward Nghe An province.This estuary area is formed in the period from after the sea level dropped below 0m (current water level) to the present: i) Channel II developed moving towards Ha Tinh Province; ii) Channel III developed moving towards Nghe An Province; iii) In channel I, a second river branch is formed because the flow of river cuts through the Hong Lam- Hong Nhat mudflat (original word: Hồng Lam -Hồng Nhất),at the same time creating an island.Morphological characteristics of the estuary area of Lam River are the main result of erosion and deposition activities corresponding to two water levels: the water level is about 2 m lower than the current water level and the current water level.Characteristics of the sediment layers on the riverbed in the estuary can be used to determine the sea levels in Late Holocene to the present.
Keywords: Lam River, development, Cua Hoi, river morphology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4271457 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7271456 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10221455 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.
Keywords: Cyclic shift, multiple detection, parallel combined spread spectrum, PN code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5531454 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.
Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7651453 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: Context, exception, default, IDS, Non-monotonic Description Logic JClassicδє, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14301452 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.
Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611451 Fault Classification of a Doubly FED Induction Machine Using Neural Network
Authors: A. Ourici
Abstract:
Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461450 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.
Keywords: Impedance spectroscopy, Ultrasensitive detection in blood, Peak frequency, Electronic interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26931449 A Literature Survey of Neural Network Applications for Shunt Active Power Filters
Authors: S. Janpong, K-L. Areerak, K-N. Areerak
Abstract:
This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30651448 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28441447 Response of Pavement under Temperature and Vehicle Coupled Loading
Authors: Yang Zhong, Mei-jie Xu
Abstract:
To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621446 Feature's Extraction of Human Body Composition in Images by Segmentation Method
Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani
Abstract:
Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.
Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27711445 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation
Authors: Ashutosh Kumar Singh, Anand Mohan
Abstract:
This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651444 Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks
Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh
Abstract:
Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.Keywords: Ad hoc, AODV, Back Bone, routing, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21601443 UWB Bowtie Slot Antenna for Breast Cancer Detection
Authors: N. Seladji-Hassaine, L. Merad, S.M. Meriah, F.T. Bendimerad
Abstract:
UWB is a very attractive technology for many applications. It provides many advantages such as fine resolution and high power efficiency. Our interest in the current study is the use of UWB radar technique in microwave medical imaging systems, especially for early breast cancer detection. The Federal Communications Commission FCC allowed frequency bandwidth of 3.1 to 10.6 GHz for this purpose. In this paper we suggest an UWB Bowtie slot antenna with enhanced bandwidth. Effects of varying the geometry of the antenna on its performance and bandwidth are studied. The proposed antenna is simulated in CST Microwave Studio. Details of antenna design and simulation results such as return loss and radiation patterns are discussed in this paper. The final antenna structure exhibits good UWB characteristics and has surpassed the bandwidth requirements.Keywords: Ultra Wide Band (UWB), microwave imaging system, Bowtie antenna, return loss, impedance bandwidth enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39781442 An Approach in the Improvement of the Reliability of Impedance Relay
Authors: D. Ouahdi, R. Ladjeroud, I. Habi
Abstract:
The distance protection mainly the impedance relay which is considered as the main protection for transmission lines can be subjected to impedance measurement error which is, mainly, due to the fault resistance and to the power fluctuation. Thus, the impedance relay may not operate for a short circuit at the far end of the protected line (case of the under reach) or operates for a fault beyond its protected zone (case of overreach). In this paper, an approach to fault detection by a distance protection, which distinguishes between the faulty conditions and the effect of overload operation mode, has been developed. This approach is based on the symmetrical components; mainly the negative sequence, and it is taking into account both the effect of fault resistance and the overload situation which both have an effect upon the reliability of the protection in terms of dependability for the former and security for the latter.
Keywords: Distance Protection, Fault Detection, negative sequence, overload, Transmission line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411441 Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air
Authors: J. Kellner, A. Bumbová, D. Pluskal, A. Langerová, Z. Večeřa, P. Mikuška
Abstract:
The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.
Keywords: aerosol enrichment unit, air pollution, NO2, portableaerosol concentrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911440 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.
Keywords: Advanced Persistent Threat, Malware, Network Security, Network Packet, Exploit Kits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691439 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani S. Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.
Keywords: Binary segmentation, change point, exponential Lomax distribution, information criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411438 Design Aesthetics of Mobile Interface
Authors: Shafiq ur Rehman, Jane-Lisa Coughlan
Abstract:
Mobiles are considered to be the most frequently used electronic items in world after electricity. It is probably the only device that can be used by any gender with no age limits depending on its functionality. This paper present the interactive interface of Mobile and particularly aiming the use of advanced phones which are also called smart phones. With the changes in the trend where users are now moving from ordinary mobiles to the one with touch screens and facilities such as WiFi and internet browsing.Keywords: interface design, functionality, intelligent system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88931437 A Study on Abnormal Behavior Detection in BYOD Environment
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors, such as information leaks, using the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection, and discusses applications of this method in BYOD environment.
Keywords: BYOD, Security, Anomaly Behavior Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20671436 Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.
Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901435 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal
Abstract:
In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471434 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.
Keywords: Smart grid network, security, threats, vulnerabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951433 Abnormality Detection of Persons Living Alone Using Daily Life Patterns Obtained from Sensors
Authors: Ippei Kamihira, Takashi Nakajima, Taiyo Matsumura, Hikaru Miura, Takashi Ono
Abstract:
In this research, the goal was construction of a system by which multiple sensors were used to observe the daily life behavior of persons living alone (while respecting their privacy), using this information to judge such conditions as bad physical condition or falling in the home, etc., so that these abnormal conditions can be made known to relatives and third parties. The daily life patterns of persons living alone are expressed by the number of responses of sensors each time that a set time period has elapsed. By comparing data for the prior two weeks, it was possible to judge a situation as “normal” when the person was in good physical condition or as “abnormal” when the person was in bad physical condition.
Keywords: Sensors, Elderly living alone, Abnormality detection, Lifestyle habit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221432 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection
Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan
Abstract:
This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market
Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31671431 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.
Keywords: Area-based traffic, car-following model, micro-simulation, stochastic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7741430 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia, recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines, to upgrade power systems into smart grids, target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, they are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, and therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we present a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.
Keywords: Anomaly detection, SmartGrid, edge, maintainability, reliability, stochastic process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323