Search results for: Attention Multiple Instance Learning
3414 Rethinking Research for Genetically Modified (GM) Food
Abstract:
This paper suggests a rethinking of the existing research about Genetically Modified (GM) food. Since the first batch of GM food was commercialised in the UK market, GM food rapidly received and lost media attention in the UK. Disagreement on GM food policy between the US and the EU has also drawn scholarly attention to this issue. Much research has been carried out intending to understand people-s views about GM food and the shaping of these views. This paper was based on the data collected in twenty-nine semi-structured interviews, which were examined through Erving Goffman-s idea of self-presentation in interactions to suggest that the existing studies investigating “consumer attitudes" towards GM food have only considered the “front stage" in the dramaturgic metaphor. This paper suggests that the ways in which people choose to present themselves when participating these studies should be taken into account during the data analysis.Keywords: Boundary work, demarcation of science, GM food, self-presentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14283413 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30433412 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.
Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4723411 Distribution Feeder Reconfiguration Considering Distributed Generators
Authors: R. Khorshidi , T. Niknam, M. Nayeripour
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.
Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123410 Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation for a trainer aircraft selection problem using "preference analysis for reference ideal solution (PARIS)” approach. The available relevant literature points to the use of multiple criteria decision making analysis (MCDMA) methods for the problem of trainer aircraft selection, which often involves conflicting multiple criteria. Therefore, this MCDMA study aims to propose a robust systematic integrated framework focusing on the trainer aircraft selection problem. For this purpose, an integrated preference analysis approach based the mean weight and entropy weight procedures with PARIS, and TOPSIS was used for a MCDMA compensating solution. In this study, six trainer aircraft alternatives were evaluated according to six technical decision criteria, and data were collected from the current relevant literature. As a result, the King Air C90GTi alternative was identified as the most suitable trainer aircraft alternative. In order to verify the stability and accuracy of the results obtained, comparisons were made with existing MCDMA methods during the sensitivity and validity analysis process.The results of the application were further validated by applying the comparative analysis-based PARIS, and TOPSIS method. The proposed integrated MCDMA systematic structure is also expected to address the issues encountered in the aircraft selection process. Finally, the analysis results obtained show that the proposed MCDMA method is an effective and accurate tool that can help analysts make better decisions.
Keywords: aircraft, trainer aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4303409 Performance Analysis of Selective Adaptive Multiple Access Interference Cancellation for Multicarrier DS-CDMA Systems
Authors: Maged Ahmed, Ahmed El-Mahdy
Abstract:
In this paper, Selective Adaptive Parallel Interference Cancellation (SA-PIC) technique is presented for Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) scheme. The motivation of using SA-PIC is that it gives high performance and at the same time, reduces the computational complexity required to perform interference cancellation. An upper bound expression of the bit error rate (BER) for the SA-PIC under Rayleigh fading channel condition is derived. Moreover, the implementation complexities for SA-PIC and Adaptive Parallel Interference Cancellation (APIC) are discussed and compared. The performance of SA-PIC is investigated analytically and validated via computer simulations.
Keywords: Adaptive interference cancellation, communicationsystems, multicarrier signal processing, spread spectrum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18523408 Impact of Behavioral Aspects of Autism on Cognitive Abilities in Children with Autism Spectrum Disorder
Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir
Abstract:
Cognitive symptoms and behavioral symptoms may, in fact, overlap and be related to the level of the general cognitive function. We have measured the behavioral aspects of autism and its correlation to the cognitive ability in 30 children with ASD. We used a neuropsychological Battery CANTAB eclipse to evaluate the ASD children's cognitive ability. Individuals with ASD and challenging behaviors showed significant correlation between some cognitive abilities and Motor aspects. Based on these findings, we can conclude that the motor behavioral problems in autism affect specific cognitive abilities in ASDs such as comprehension, learning, reversal, acquisition, attention set shifting, and speed of reaction to one stimulus. Future researches should also focus on the relationship between motor stereotypes and other subtypes of repetitive behaviors, such as verbal stereotypes, ritual routine adherence, and the use of different types of CANTAB tests.
Keywords: Autism, Cognitive ability, Motor Behavior, and Neuropsychological battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21363407 Promoting Complex Systems Learning through the use of Computer Modeling
Authors: Kamel Hashem, David Mioduser
Abstract:
This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.Keywords: Complexity, Educational technology, Learning by modeling, Mental models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15723406 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28153405 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks
Authors: Z. Shaaban
Abstract:
This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.
Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14773404 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27113403 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8713402 Socio-Demographic Effects on Digital Libraries Preference and Use: A Case Study at Higher Learning Institutions
Authors: A. K. Razilan, A. B. Amzari, B. Ap-azli, A. R. Safawi
Abstract:
Explosion in information management and information system technology has brought dramatic changes in learning and library system environments. The use of academic digital libraries does witness the spectacular impact on academic societies’ way of performing their study in Malaysia, a country with a multi-racial people. This paper highlights a research on examining the socio-demographic differences on the preference and use of academic digital libraries as compared to physical libraries at higher learning institutions. Findings indicate that preference towards digital libraries differed between ethnicity, gender and university. However none of the socio-demographic factors is statistically significant in terms of the use of digital libraries.
Keywords: Socio-demographic, academic digital library, preference, use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14863401 Locus of Control, Emotion Venting Strategy and Internet Addiction
Authors: Jia-Ru Li, Chih-Hung Wang, Ching-Wen Lin
Abstract:
Internet addiction has become a critical problem on adolescents in Taiwan, and its negative effects on various dimensions of adolescent development caught the attention of educational and psychological experts. This study examined the correlation between cognitive (locus of control) and emotion (emotion venting strategies) factors on internet addiction of adolescents in Taiwan. Using the Compulsive Internet Use (CIU) and the Emotion Venting Strategy scales, a survey was conducted and 215 effective samples (students ranging from12 to14 years old) returned. Quantitative analysis methods such as descriptive statistics, t-test, ANOVA, Pearson correlations and multiple regression were adopted. The results were as follows: 1. Severity of Internet addiction has significant gender differences; boys were at a higher risk than girls in becoming addicted to the Internet. 2. Emotion venting, locus of control and internet addiction have been shown to be positive correlated with one another. 3. Setting the locus of control as the control variable, emotion venting strategy has positive and significant contribution to internet addiction. The results of this study suggest that coaching deconstructive emotion strategies and cognitive believes are encouraged to integrate with actual field work.Keywords: Emotion venting strategy, locus of control, adolescent internet addiction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31043400 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study
Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh
Abstract:
Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.
Keywords: Education, smartphone, social networks, teenagers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15243399 Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in MIMO Systems
Authors: Jamal R. Elbergali
Abstract:
Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero- Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol, then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods.Keywords: SNR, BER, BPSK, MIMO, Modulation, Zero forcing (ZF), OSIC, ZF-IC, Spatial Multiplexing (SM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16953398 The Role of Contextual Ontologies in Enterprise Modeling
Authors: Ahmed Arara
Abstract:
Information sharing and exchange, rather than information processing, is what characterizes information technology in the 21st century. Ontologies, as shared common understanding, gain increasing attention, as they appear as the most promising solution to enable information sharing both at a semantic level and in a machine-processable way. Domain Ontology-based modeling has been exploited to provide shareability and information exchange among diversified, heterogeneous applications of enterprises. Contextual ontologies are “an explicit specification of contextual conceptualization". That is: ontology is characterized by concepts that have multiple representations and they may exist in several contexts. Hence, contextual ontologies are a set of concepts and relationships, which are seen from different perspectives. Contextualization is to allow for ontologies to be partitioned according to their contexts. The need for contextual ontologies in enterprise modeling has become crucial due to the nature of today's competitive market. Information resources in enterprise is distributed and diversified and is in need to be shared and communicated locally through the intranet and globally though the internet. This paper discusses the roles that ontologies play in an enterprise modeling, and how ontologies assist in building a conceptual model in order to provide communicative and interoperable information systems. The issue of enterprise modeling based on contextual domain ontology is also investigated, and a framework is proposed for an enterprise model that consists of various applications.Keywords: Contextual ontologies, Enterprise model, domainontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423397 A Compilation of Nanotechnology in Thin Film Solar Cell Devices
Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Nik Hasniza Nik Aman
Abstract:
Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as Cadmium Telluride (CdTe), Copper-Indium-Gallium-diSelenide (CIGS), Copper-Zinc-Tin-Sulphide (CZTS), and Dye-Sensitized Solar Cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.Keywords: Nanotechnology, nanocrystalline, nanowires, carbon nanotubes, nanorods, thin film solar cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36153396 ANN Models for Microstrip Line Synthesis and Analysis
Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy
Abstract:
Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503395 Evaluation of Curriculum Quality of Postgraduate Studies of Actuarial Science Field at Public Universities of Iran
Authors: F. Havas Beigi, M. Vafaee Yeganeh, E. Mohammadi
Abstract:
Evaluation and survey of curriculum quality as one of the most important components of universities system is necessary for different levels in higher education. The main purpose of this study was to survey of the curriculum quality of Actuarial science field. Case: University of SHahid Beheshti and Higher education institute of Eco insurance (according to viewpoint of students, alumni, employers and faculty members). Descriptive statistics (mean, tables, percentage, and frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criteria considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. Content, teaching and learning methods, space and facilities, assessment of learning criteria were relatively desirable level, objectives and time criterions were desirable level. The quality of curriculum of Actuarial Science field was relatively desirable level.
Keywords: Quality, curriculum, Actuarial science, higher education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18653394 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities
Authors: Sayed Hadi Sadeghi
Abstract:
This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.
Keywords: Support services, e-network practice, Australian universities, United States universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9873393 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6553392 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English
Authors: Adnan Z. Mkhelif
Abstract:
Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.
Keywords: Corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8693391 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging
Authors: Ashraf Abuelhaija, Klaus Solbach
Abstract:
In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.Keywords: EM coupling, Inter-element isolation, Magnetic resonance imaging (MRI), Parallel Transmit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17433390 Architecting a Knowledge Theatre
Authors: David C. White
Abstract:
This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.Keywords: Knowledge, personal, open data, visualization, learning, teaching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13383389 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.
Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9703388 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17473387 The Use of Mobile Phone as Enhancement to Mark Multiple Choice Objectives English Grammar and Literature Examination: An Exploratory Case Study of Preliminary National Diploma Students, Abdu Gusau Polytechnic, Talata Mafara, Zamfara State, Nigeria
Authors: T. Abdulkadir
Abstract:
Most often, marking and assessment of multiple choice kinds of examinations have been opined by many as a cumbersome and herculean task to accomplished manually in Nigeria. Usually this may be in obvious nexus to the fact that mass numbers of candidates were known to take the same examination simultaneously. Eventually, marking such a mammoth number of booklets dared and dread even the fastest paid examiners who often undertake the job with the resulting consequences of stress and boredom. This paper explores the evolution, as well as the set aim to envision and transcend marking the Multiple Choice Objectives- type examination into a thing of creative recreation, or perhaps a more relaxing activity via the use of the mobile phone. A more “pragmatic” dimension method was employed to achieve this work, rather than the formal “in-depth research” based approach due to the “novelty” of the mobile-smartphone e-Marking Scheme discovery. Moreover, being an evolutionary scheme, no recent academic work shares a direct same topic concept with the ‘use of cell phone as an e-marking technique’ was found online; thus, the dearth of even miscellaneous citations in this work. Additional future advancements are what steered the anticipatory motive of this paper which laid the fundamental proposition. However, the paper introduces for the first time the concept of mobile-smart phone e-marking, the steps to achieve it, as well as the merits and demerits of the technique all spelt out in the subsequent pages.
Keywords: Cell phone, e-marking scheme, mobile phone, mobile-smart phone, multiple choice objectives, smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9693386 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19203385 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays
Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang
Abstract:
This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.
Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703