Search results for: strategy classification system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9922

Search results for: strategy classification system.

9022 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM

Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta

Abstract:

In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.

Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
9021 Mobile Velocity Based Bidirectional Call Overflow Scheme in Hierarchical Cellular System

Authors: G. M. Mir, Moinuddin, N. A. Shah

Abstract:

In the age of global communications, heterogeneous networks are seen to be the best choice of strategy to ensure continuous and uninterruptible services. This will allow mobile terminal to stay in connection even they are migrating into different segment coverage through the handoff process. With the increase of teletraffic demands in mobile cellular system, hierarchical cellular systems have been adopted extensively for more efficient channel utilization and better QoS (Quality of Service). This paper presents a bidirectional call overflow scheme between two layers of microcells and macrocells, where handoffs are decided by the velocity of mobile making the call. To ensure that handoff calls are given higher priorities, it is assumed that guard channels are assigned in both macrocells and microcells. A hysteresis value introduced in mobile velocity is used to allow mobile roam in the same cell if its velocity changes back within the set threshold values. By doing this the number of handoffs is reduced thereby reducing the processing overhead and enhancing the quality of service to the end user.

Keywords: Hierarchical cellular systems, hysteresis, overflow, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
9020 Establishment of Air Quality Zones in Italy

Authors: M. G. Dirodi, G. Gugliotta, C. Leonardi

Abstract:

Member States shall establish zones and agglomerations throughout their territory to assess and manage air quality in order to comply with European directives. In Italy decree 155/2010, transposing Directive 2008/50/EC on ambient air quality and cleaner air for Europe, merged into a single act the previous provisions on ambient air quality assessment and management, including those resulting from the implementation of Directive 2004/107/EC relating to arsenic, cadmium, nickel, mercury and polycyclic aromatic hydrocarbons in ambient air. Decree 155/2010 introduced stricter rules for identifying zones on the basis of the characteristics of the territory in spite of considering pollution levels, as it was in the past. The implementation of such new criteria has reduced the great variability of the previous zoning, leading to a significant reduction of the total number of zones and to a complete and uniform ambient air quality assessment and management throughout the Country. The present document is related to the new zones definition in Italy according to Decree 155/2010. In particular the paper contains the description and the analysis of the outcome of zoning and classification.

Keywords: Zones, agglomerations, air quality assessment, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
9019 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
9018 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods

Authors: Mochammad Dewo, Sumarsono Sudarto

Abstract:

The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.

Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224
9017 Justification and Classification of Issues for the Selection and Implementation of Advanced Manufacturing Technologies

Authors: Zahra Banakar, Farzad Tahriri

Abstract:

It has often been said that the strength of any country resides in the strength of its industrial sector, and Progress in industrial society has been accomplished by the creation of new technologies. Developments have been facilitated by the increasing availability of advanced manufacturing technology (AMT), in addition the implementation of advanced manufacturing technology (AMT) requires careful planning at all levels of the organization to ensure that the implementation will achieve the intended goals. Justification and implementation of advanced manufacturing technology (AMT) involves decisions that are crucial for the practitioners regarding the survival of business in the present days of uncertain manufacturing world. This paper assists the industrial managers to consider all the important criteria for success AMT implementation, when purchasing new technology. Concurrently, this paper classifies the tangible benefits of a technology that are evaluated by addressing both cost and time dimensions, and the intangible benefits are evaluated by addressing technological, strategic, social and human issues to identify and create awareness of the essential elements in the AMT implementation process and identify the necessary actions before implementing AMT.

Keywords: Advanced Manufacturing Technology (AMT), Justification and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
9016 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
9015 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
9014 Automatic Enhanced Update Summary Generation System for News Documents

Authors: S. V. Kogilavani, C. S. Kanimozhiselvi, S. Malliga

Abstract:

Fast changing knowledge systems on the Internet can be accessed more efficiently with the help of automatic document summarization and updating techniques. The aim of multi-document update summary generation is to construct a summary unfolding the mainstream of data from a collection of documents based on the hypothesis that the user has already read a set of previous documents. In order to provide a lot of semantic information from the documents, deeper linguistic or semantic analysis of the source documents were used instead of relying only on document word frequencies to select important concepts. In order to produce a responsive summary, meaning oriented structural analysis is needed. To address this issue, the proposed system presents a document summarization approach based on sentence annotation with aspects, prepositions and named entities. Semantic element extraction strategy is used to select important concepts from documents which are used to generate enhanced semantic summary.

Keywords: Aspects, named entities, prepositions, update summary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
9013 Lane Changing and Merging Maneuvers of Carlike Robots

Authors: Bibhya Sharma, Jito Vanualailai, Ravindra Rai

Abstract:

This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.

Keywords: Lane merging, Lyapunov-based control scheme, path-guidance principle, split/merge strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
9012 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation

Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová

Abstract:

Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
9011 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 1- Modelling

Authors: Faraj El Dabee, Romeo Marian, Yousef Amer

Abstract:

Just-In-Time (JIT) is a lean manufacturing tool, which provides the benefits of efficiency, and of minimizing unnecessary costs for many organisations. However, the risks arising from these benefits have been disregarded. These risks impact on system processes disrupting the whole supply chain. This paper proposes an inventory model that can simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. Some results that will be illustrated in the second part of this paper are presented.

Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
9010 Reliability Improvement with Optimal Placement of Distributed Generation in Distribution System

Authors: N. Rugthaicharoencheep, T. Langtharthong

Abstract:

This paper presents the optimal placement and sizing of distributed generation (DG) in a distribution system. The problem is to reliability improvement of distribution system with distributed generations. The technique employed to solve the minimization problem is based on a developed Tabu search algorithm and reliability worth analysis. The developed methodology is tested with a distribution system of Roy Billinton Test System (RBTS) bus 2. It can be seen from the case study that distributed generation can reduce the customer interruption cost and therefore improve the reliability of the system. It is expected that our proposed method will be utilized effectively for distribution system operator.

Keywords: Distributed generation Optimization technique Reliability improvement, Distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019
9009 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
9008 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
9007 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
9006 Economic effects and Energy Use Efficiency of Incorporating Alfalfa and Fertilizer into Grass- Based Pasture Systems

Authors: M. Khakbazan, S. L. Scott, H. C. Block, C. D. Robins, W. P. McCaughey

Abstract:

A ten-year grazing study was conducted at the Agriculture and Agri-Food Canada Brandon Research Centre in Manitoba to study the effect of alfalfa inclusion and fertilizer (N, P, K, and S) addition on economics and efficiency of non-renewable energy use in meadow brome grass-based pasture systems for beef production. Fertilizing grass-only or alfalfa-grass pastures to full soil test recommendations improved pasture productivity, but did not improve profitability compared to unfertilized pastures. Fertilizing grass-only pastures resulted in the highest net loss of any pasture management strategy in this study. Adding alfalfa at the time of seeding, with no added fertilizer, was economically the best pasture improvement strategy in this study. Because of moisture limitations, adding commercial fertilizer to full soil test recommendations is probably not economically justifiable in most years, especially with the rising cost of fertilizer. Improving grass-only pastures by adding fertilizer and/or alfalfa required additional non-renewable energy inputs; however, the additional energy required for unfertilized alfalfa-grass pastures was minimal compared to the fertilized pastures. Of the four pasture management strategies, adding alfalfa to grass pastures without adding fertilizer had the highest efficiency of energy use. Based on energy use and economic performance, the unfertilized alfalfa-grass pasture was the most efficient and sustainable pasture system.

Keywords: Alfalfa, grass, fertilizer, pasture systems, economics, energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
9005 Risk Management Strategy for Protecting Cultural Heritage: Case Study of the Institute of Egypt

Authors: Amany A. Ragheb, Ghada Ragheb, Abd ElRahman A.

Abstract:

Egypt has a countless heritage of mansions, castles, cities, towns, villages, industrial and manufacturing sites. This richness of heritage provides endless and matchless prospects for culture. Despite being famous worldwide, Egypt’s heritage still is in constant need of protection. Political conflicts and religious revolutions form a direct threat to buildings in various areas, historic, archaeological sites, and religious monuments. Egypt has witnessed two revolutions in less than 60 years; both had an impact on its architectural heritage. In this paper, the authors aim to review legal and policy framework to protect the cultural heritage and present the risk management strategy for cultural heritage in conflict. Through a review of selected international models of devastated architectural heritage in conflict zones and highlighting some of their changes, we can learn from the experiences of other countries to assist towards the development of a methodology to halt the plundering of architectural heritage. Finally, the paper makes an effort to enhance the formulation of a risk management strategy for protection and conservation of cultural heritage, through which to end the plundering of Egypt’s architectural legacy in the Egyptian community (revolutions, 1952 and 2011); and by presenting to its surrounding community the benefits derived from maintaining it.

Keywords: Cultural heritage, legal regulation, risk management, preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
9004 Digital Content Strategy: Detailed Review of the Key Content Components

Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq

Abstract:

The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression through to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is in establishing an agreed definition for the notion of Digital Content Strategy (DCS), which currently does not exist, as it is viewed from an excessive number of angles. A strategic approach to content, nonetheless, is required, both practically and contextually. We, therefore, aimed at attempting to identify the key content components, comprising a DCS, to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of DCS and related aspects, using PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data were collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources, related to the issues discussed, we revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of DCS and can be considered for implementation in a business retail setting.

Keywords: Digital content strategy, digital marketing strategy, key content components, websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228
9003 Digital Content Strategy: Detailed Review of the Key Content Components

Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq

Abstract:

The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression through to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is in establishing an agreed definition for the notion of Digital Content Strategy (DCS), which currently does not exist, as it is viewed from an excessive number of angles. A strategic approach to content, nonetheless, is required, both practically and contextually. We, therefore, aimed at attempting to identify the key content components, comprising a DCS, to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of DCS and related aspects, using PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data were collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources, related to the issues discussed, we revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of DCS and can be considered for implementation in a business retail setting.

Keywords: Digital content strategy, digital marketing strategy, key content components, websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214
9002 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: Turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
9001 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Authors: Raimund Leitner, Susanne Rosskopf

Abstract:

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
9000 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
8999 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
8998 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
8997 Reliability Evaluation of Distribution System Considering Distributed Generation

Authors: Raju Kaduru, Narsaiah Srinivas Gondlala

Abstract:

This paper presents an analytical approach for evaluating distribution system reliability indices in the presence of distributed generation. Modeling distributed generation and evaluation of distribution system reliability indices using the frequency duration technique. Using model implements and case studies are discussed. Results showed that location of DG and its effect in distribution reliability indices. In this respect, impact of DG on distribution system is investigated using the IEEE Roy Billinton test system (RBTS2) included feeder 1. Therefore, it will help to the distribution system planners in the DG resource placement.

Keywords: Distributed Generation, DG Location, Distribution System, Reliability Indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
8996 Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
8995 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Authors: Kalinga Ellen A., Bagile Burchard B.

Abstract:

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
8994 Elaboration Development Strategy and the Analysis of Trends Shaping the Information Economy in Azerbaijan on the Basis of the Experience of Foreign Countries

Authors: Rasim M. Alguliyev, Alovsat G. Aliyev

Abstract:

In the paper, information on economic development trends in developed countries are analyzed. The current status of information society and economy of the country is reviewed and some recommendations are given for future development. The problems of Information Society and establishment of its innovative economy are studied. In this turn, development trends information economy in developed countries are analyzed.

Keywords: Information economy, ICT sector, ICT infrastructure, innovation, innovation system hi-tech products, antimonopoly policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
8993 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906