Search results for: Image Normalization
720 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554719 Electrical Impedance Imaging Using Eddy Current
Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo
Abstract:
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696718 Spatial Variability of Some Soil Properties in Mountain Rangelands of Northern Iran
Authors: Zeinab Jafarian Jeloudar, Hossien Kavianpoor, Abazar Esmali Ouri, Ataollah Kavian
Abstract:
In this paper spatial variability of some chemical and physical soil properties were investigated in mountain rangelands of Nesho, Mazandaran province, Iran. 110 soil samples from 0-30 cm depth were taken with systematic method on grid 30×30 m2 in regions with different vegetation cover and transported to laboratory. Then soil chemical and physical parameters including Acidity (pH), Electrical conductivity, Caco3, Bulk density, Particle density, total phosphorus, total Nitrogen, available potassium, Organic matter, Saturation moisture, Soil texture (percentage of sand, silt and clay), Sodium, Calcium, magnesium were measured in laboratory. Data normalization was performed then was done statistical analysis for description of soil properties and geostatistical analysis for indication spatial correlation between these properties and were perpetrated maps of spatial distribution of soil properties using Kriging method. Results indicated that in the study area Saturation moisture and percentage of Sand had highest and lowest spatial correlation respectively.Keywords: Chemical and physical soil properties, Iran, Spatial variability, Nesho Rangeland
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021717 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633716 Real-time Laser Monitoring based on Pipe Detective Operation
Authors: Mongkorn Klingajay, Tawatchai Jitson
Abstract:
The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819715 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931714 An Improved Method to Watermark Images Sensitive to Blocking Artifacts
Authors: Afzel Noore
Abstract:
A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.Keywords: Digital watermarking, data hiding, modified discretecosine transformation (MDCT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605713 Emotion Classification using Adaptive SVMs
Authors: P. Visutsak
Abstract:
The study of the interaction between humans and computers has been emerging during the last few years. This interaction will be more powerful if computers are able to perceive and respond to human nonverbal communication such as emotions. In this study, we present the image-based approach to emotion classification through lower facial expression. We employ a set of feature points in the lower face image according to the particular face model used and consider their motion across each emotive expression of images. The vector of displacements of all feature points input to the Adaptive Support Vector Machines (A-SVMs) classifier that classify it into seven basic emotions scheme, namely neutral, angry, disgust, fear, happy, sad and surprise. The system was tested on the Japanese Female Facial Expression (JAFFE) dataset of frontal view facial expressions [7]. Our experiments on emotion classification through lower facial expressions demonstrate the robustness of Adaptive SVM classifier and verify the high efficiency of our approach.Keywords: emotion classification, facial expression, adaptive support vector machines, facial expression classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224712 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image processing, real-time recognition, weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164711 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419710 Probabilistic Bhattacharya Based Active Contour Model in Structure Tensor Space
Authors: Hiren Mewada, Suprava Patnaik
Abstract:
Object identification and segmentation application requires extraction of object in foreground from the background. In this paper the Bhattacharya distance based probabilistic approach is utilized with an active contour model (ACM) to segment an object from the background. In the proposed approach, the Bhattacharya histogram is calculated on non-linear structure tensor space. Based on the histogram, new formulation of active contour model is proposed to segment images. The results are tested on both color and gray images from the Berkeley image database. The experimental results show that the proposed model is applicable to both color and gray images as well as both texture images and natural images. Again in comparing to the Bhattacharya based ACM in ICA space, the proposed model is able to segment multiple object too.
Keywords: Active Contour, Bhattacharya Histogram, Structure tensor, Image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058709 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability
Authors: A. Vani, M. N. Mamatha
Abstract:
Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient.Keywords: Visual evoked potential, OpenViBe, BioMEMS, Neuro prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466708 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412707 VLSI Design of 2-D Discrete Wavelet Transform for Area-Efficient and High-Speed Image Computing
Authors: Mountassar Maamoun, Mehdi Neggazi, Abdelhamid Meraghni, Daoud Berkani
Abstract:
This paper presents a VLSI design approach of a highspeed and real-time 2-D Discrete Wavelet Transform computing. The proposed architecture, based on new and fast convolution approach, reduces the hardware complexity in addition to reduce the critical path to the multiplier delay. Furthermore, an advanced twodimensional (2-D) discrete wavelet transform (DWT) implementation, with an efficient memory area, is designed to produce one output in every clock cycle. As a result, a very highspeed is attained. The system is verified, using JPEG2000 coefficients filters, on Xilinx Virtex-II Field Programmable Gate Array (FPGA) device without accessing any external memory. The resulting computing rate is up to 270 M samples/s and the (9,7) 2-D wavelet filter uses only 18 kb of memory (16 kb of first-in-first-out memory) with 256×256 image size. In this way, the developed design requests reduced memory and provide very high-speed processing as well as high PSNR quality.Keywords: Discrete Wavelet Transform (DWT), Fast Convolution, FPGA, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966706 An Algorithm for Secure Visible Logo Embedding and Removing in Compression Domain
Authors: Hongyuan Li, Guang Liu, Yuewei Dai, Zhiquan Wang
Abstract:
Digital watermarking is the process of embedding information into a digital signal which can be used in DRM (digital rights managements) system. The visible watermark (often called logo) can indicate the owner of the copyright which can often be seen in the TV program and protects the copyright in an active way. However, most of the schemes do not consider the visible watermark removing process. To solve this problem, a visible watermarking scheme with embedding and removing process is proposed under the control of a secure template. The template generates different version of watermarks which can be seen visually the same for different users. Users with the right key can completely remove the watermark and recover the original image while the unauthorized user is prevented to remove the watermark. Experiment results show that our watermarking algorithm obtains a good visual quality and is hard to be removed by the illegally users. Additionally, the authorized users can completely remove the visible watermark and recover the original image with a good quality.Keywords: digital watermarking, visible and removablewatermark, secure template, JPEG compression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536705 Subjective Versus Objective Assessment for Magnetic Resonance Images
Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran
Abstract:
Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218704 Game-Tree Simplification by Pattern Matching and Its Acceleration Approach using an FPGA
Authors: Suguru Ochiai, Toru Yabuki, Yoshiki Yamaguchi, Yuetsu Kodama
Abstract:
In this paper, we propose a Connect6 solver which adopts a hybrid approach based on a tree-search algorithm and image processing techniques. The solver must deal with the complicated computation and provide high performance in order to make real-time decisions. The proposed approach enables the solver to be implemented on a single Spartan-6 XC6SLX45 FPGA produced by XILINX without using any external devices. The compact implementation is achieved through image processing techniques to optimize a tree-search algorithm of the Connect6 game. The tree search is widely used in computer games and the optimal search brings the best move in every turn of a computer game. Thus, many tree-search algorithms such as Minimax algorithm and artificial intelligence approaches have been widely proposed in this field. However, there is one fundamental problem in this area; the computation time increases rapidly in response to the growth of the game tree. It means the larger the game tree is, the bigger the circuit size is because of their highly parallel computation characteristics. Here, this paper aims to reduce the size of a Connect6 game tree using image processing techniques and its position symmetric property. The proposed solver is composed of four computational modules: a two-dimensional checkmate strategy checker, a template matching module, a skilful-line predictor, and a next-move selector. These modules work well together in selecting next moves from some candidates and the total amount of their circuits is small. The details of the hardware design for an FPGA implementation are described and the performance of this design is also shown in this paper.Keywords: Connect6, pattern matching, game-tree reduction, hardware direct computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974703 Automatic 3D Reconstruction of Coronary Artery Centerlines from Monoplane X-ray Angiogram Images
Authors: Ali Zifan, Panos Liatsis, Panagiotis Kantartzis, Manolis Gavaises, Nicos Karcanias, Demosthenes Katritsis
Abstract:
We present a new method for the fully automatic 3D reconstruction of the coronary artery centerlines, using two X-ray angiogram projection images from a single rotating monoplane acquisition system. During the first stage, the input images are smoothed using curve evolution techniques. Next, a simple yet efficient multiscale method, based on the information of the Hessian matrix, for the enhancement of the vascular structure is introduced. Hysteresis thresholding using different image quantiles, is used to threshold the arteries. This stage is followed by a thinning procedure to extract the centerlines. The resulting skeleton image is then pruned using morphological and pattern recognition techniques to remove non-vessel like structures. Finally, edge-based stereo correspondence is solved using a parallel evolutionary optimization method based on f symbiosis. The detected 2D centerlines combined with disparity map information allow the reconstruction of the 3D vessel centerlines. The proposed method has been evaluated on patient data sets for evaluation purposes.Keywords: Vessel enhancement, centerline extraction, symbiotic reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272702 An Evaluation on Fixed Wing and Multi-Rotor UAV Images Using Photogrammetric Image Processing
Authors: Khairul Nizam Tahar, Anuar Ahmad
Abstract:
This paper has introduced a slope photogrammetric mapping using unmanned aerial vehicle. There are two units of UAV has been used in this study; namely; fixed wing and multi-rotor. Both UAVs were used to capture images at the study area. A consumer digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. The objectives of this study are to obtain three dimensional coordinates of slope area and to determine the accuracy of photogrammetric product produced from both UAVs. Several control points and checkpoints were established Real Time Kinematic Global Positioning System (RTK-GPS) in the study area. All acquired images from both UAVs went through all photogrammetric processes such as interior orientation, exterior orientation, aerial triangulation and bundle adjustment using photogrammetric software. Two primary results were produced in this study; namely; digital elevation model and digital orthophoto. Based on results, UAV system can be used to mapping slope area especially for limited budget and time constraints project.
Keywords: Slope mapping, 3D, DEM, UAV, Photogrammetry, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6087701 Skew Detection Technique for Binary Document Images based on Hough Transform
Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P
Abstract:
Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095700 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924699 Adaptive Image Transmission with P-V Diversity in Multihop Wireless Mesh Networks
Authors: Wei Wang, Dongming Peng, Honggang Wang, Hamid Sharif
Abstract:
Multirate multimedia delivery applications in multihop Wireless Mesh Network (WMN) are data redundant and delay-sensitive, which brings a lot of challenges for designing efficient transmission systems. In this paper, we propose a new cross layer resource allocation scheme to minimize the receiver side distortion within the delay bound requirements, by exploring application layer Position and Value (P-V) diversity as well as the multihop Effective Capacity (EC). We specifically consider image transmission optimization here. First of all, the maximum supportable source traffic rate is identified by exploring the multihop Effective Capacity (EC) model. Furthermore, the optimal source coding rate is selected according to the P-V diversity of multirate media streaming, which significantly increases the decoded media quality. Simulation results show the proposed approach improved media quality significantly compared with traditional approaches under the same QoS requirements.Keywords: Multirate Multimedia Streaming, Effective CapacityMultihop Wireless Mesh Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470698 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study
Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das
Abstract:
Rotary entrainment is a phenomenon in which the interface of two immiscible fluids are subjected to external flux by means of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles has been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.Keywords: Entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833697 Preoperative to Intraoperative Space Registration for Management of Head Injuries
Authors: M. Gooroochurn, M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.Keywords: Image-guided Surgery, Multimodality Registration, Photogrammetry, Preoperative to Intraoperative Registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531696 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.
Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580695 Towards Automatic Recognition and Grading of Ganoderma Infection Pattern Using Fuzzy Systems
Authors: Mazliham Mohd Su'ud, Pierre Loonis, Idris Abu Seman
Abstract:
This paper deals with the extraction of information from the experts to automatically identify and recognize Ganoderma infection in oil palm stem using tomography images. Expert-s knowledge are used as rules in a Fuzzy Inference Systems to classify each individual patterns observed in he tomography image. The classification is done by defining membership functions which assigned a set of three possible hypotheses : Ganoderma infection (G), non Ganoderma infection (N) or intact stem tissue (I) to every abnormalities pattern found in the tomography image. A complete comparison between Mamdani and Sugeno style,triangular, trapezoids and mixed triangular-trapezoids membership functions and different methods of aggregation and defuzzification is also presented and analyzed to select suitable Fuzzy Inference System methods to perform the above mentioned task. The results showed that seven out of 30 initial possible combination of available Fuzzy Inference methods in MATLAB Fuzzy Toolbox were observed giving result close to the experts estimation.
Keywords: Fuzzy Inference Systems, Tomography analysis, Modelizationof expert's information, Ganoderma Infection pattern recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836694 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.790 to 24.850 in latitude and 66.910 to 66.970 in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and Avicennia germinans (Black Mangroves) have been observed throughout the study area.
Keywords: Mangrove, Hyperspectral, SAM, SFF, SID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907693 Spectral Mixture Model Applied to Cannabis Parcel Determination
Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara
Abstract:
Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.
Keywords: Gaussian mixture discriminant analysis, spectral mixture model, World View-2, land parcels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800692 3D Face Modeling based on 3D Dense Morphable Face Shape Model
Authors: Yongsuk Jang Kim, Sun-Tae Chung, Boogyun Kim, Seongwon Cho
Abstract:
Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, the proposed method extracts and matches facial landmarks from 2D image sequence containing a face to be modeled, and then reconstructs 3D vertices coordinates of the landmarks using a factorization-based SfM technique. Then, the proposed method obtains a 3D dense shape model of the face to be modeled by fitting the constructed 3D dense morphable shape model into the reconstructed 3D vertices. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method generates a 3D face model by rendering the 3D dense face shape model using the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise.Keywords: 3D Face Modeling, 3D Morphable Shape Model, 3DReconstruction, 3D Correspondence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428691 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014
Authors: R. Mofeed, N. Elgendy
Abstract:
Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.
Keywords: Cairo, cinema, informal urbanism, representation, stereotype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445