Search results for: waterborne objects
406 Motions of Multiple Objects Detection Based On Video Frames
Authors: Khin Thandar Lwin, Than Htike, Zaw Min Naing
Abstract:
This paper introduces an intelligent system, which can be applied in the monitoring of vehicle speed using a single camera. The ability of motion tracking is extremely useful in many automation problems and the solution to this problem will open up many future applications. One of the most common problems in our daily life is the speed detection of vehicles on a highway. In this paper, a novel technique is developed to track multiple moving objects with their speeds being estimated using a sequence of video frames. Field test has been conducted to capture real-life data and the processed results were presented. Multiple object problems and noisy in data are also considered. Implementing this system in real-time is straightforward. The proposal can accurately evaluate the position and the orientation of moving objects in real-time. The transformations and calibration between the 2D image and the actual road are also considered.
Keywords: Motion Estimation, Image Analyses, Speed Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430405 Reasoning with Dynamic Domains and Computer Security
Authors: Yun Bai
Abstract:
Representing objects in a dynamic domain is essential in commonsense reasoning under some circumstances. Classical logics and their nonmonotonic consequences, however, are usually not able to deal with reasoning with dynamic domains due to the fact that every constant in the logical language denotes some existing object in the static domain. In this paper, we explore a logical formalization which allows us to represent nonexisting objects in commonsense reasoning. A formal system named N-theory is proposed for this purpose and its possible application in computer security is briefly discussed.Keywords: knowledge representation and reasoning, commonsensereasoning, computer security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443404 A Dynamic Composition of an Adaptive Course
Authors: S. Chiali, Z.Eberrichi, M.Malki
Abstract:
The number of framework conceived for e-learning constantly increase, unfortunately the creators of learning materials and educational institutions engaged in e-formation adopt a “proprietor" approach, where the developed products (courses, activities, exercises, etc.) can be exploited only in the framework where they were conceived, their uses in the other learning environments requires a greedy adaptation in terms of time and effort. Each one proposes courses whose organization, contents, modes of interaction and presentations are unique for all learners, unfortunately the latter are heterogeneous and are not interested by the same information, but only by services or documents adapted to their needs. Currently the new tendency for the framework conceived for e-learning, is the interoperability of learning materials, several standards exist (DCMI (Dublin Core Metadata Initiative)[2], LOM (Learning Objects Meta data)[1], SCORM (Shareable Content Object Reference Model)[6][7][8], ARIADNE (Alliance of Remote Instructional Authoring and Distribution Networks for Europe)[9], CANCORE (Canadian Core Learning Resource Metadata Application Profiles)[3]), they converge all to the idea of learning objects. They are also interested in the adaptation of the learning materials according to the learners- profile. This article proposes an approach for the composition of courses adapted to the various profiles (knowledge, preferences, objectives) of learners, based on two ontologies (domain to teach and educational) and the learning objects.Keywords: Adaptive educational hypermedia systems (AEHS), E-learning, Learner's model, Learning objects, Metadata, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960403 Hot-Spot Blob Merging for Real-Time Image Segmentation
Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda
Abstract:
One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506402 Clustered Signatures for Modeling and Recognizing 3D Rigid Objects
Authors: H. B. Darbandi, M. R. Ito, J. Little
Abstract:
This paper describes a probabilistic method for three-dimensional object recognition using a shared pool of surface signatures. This technique uses flatness, orientation, and convexity signatures that encode the surface of a free-form object into three discriminative vectors, and then creates a shared pool of data by clustering the signatures using a distance function. This method applies the Bayes-s rule for recognition process, and it is extensible to a large collection of three-dimensional objects.Keywords: Object recognition, modeling, classification, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278401 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378400 The Determination of Rating Points of Objects with Qualitative Characteristics and their Usagein Decision Making Problems
Authors: O. Poleshchuk, E. Komarov
Abstract:
The paper presents the method developed to assess rating points of objects with qualitative indexes. The novelty of the method lies in the fact that the authors use linguistic scales that allow to formalize the values of the indexes with the help of fuzzy sets. As a result it is possible to operate correctly with dissimilar indexes on the unified basis and to get stable final results. The obtained rating points are used in decision making based on fuzzy expert opinions.Keywords: complete orthogonal semantic space, qualitativecharacteristic, rating points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209399 Semi-automatic Background Detection in Microscopic Images
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini
Abstract:
The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.
Keywords: Microscopy, flat field correction, background estimation, image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836398 Infrastructure means for Adaptive Camouflage
Authors: Jiri Barta, Albert Srnik
Abstract:
The paper deals with the perspectives and possibilities of "smart solutions" to critical infrastructure protection. It means that common computer aided technologies are used from the perspective of new, better protection of selected infrastructure objects. The paper is focused on the co-product of the Czech Defence Research Project - ADAPTIV. This project is carrying out by the University of Defence, Faculty of Economics and Management at the Department of Civil Protection. The project creates system and technology for adaptive cybernetic camouflage of armed forces objects, armaments, vehicles and troops and of mobilization infrastructure. These adaptive camouflage system and technology will be useful for army tactic activities protection and for decoys generation also. The fourth chapter of the paper concerns the possibilities of using the introduced technology to the protection of selected civil (economically important), critical infrastructure objects. The aim of this section is to introduce the scientific capabilities and potential of the University of Defence research results and solutions for the practice.Keywords: ADAPTIV, Adaptive camouflage technology, CAMouflage, Cybernetic Active Camouflage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542397 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674396 Improved Posterized Color Images based on Color Quantization and Contrast Enhancement
Authors: Oh-Yeol Kwon, Sung-Il Chien
Abstract:
A conventional image posterization method occasionally fails to preserve the shape and color of objects due to the uneffective color reduction. This paper proposes a new image posterizartion method by using modified color quantization for preserving the shape and color of objects and color contrast enhancement for improving lightness contrast and saturation. Experiment results show that our proposed method can provide visually more satisfactory posterization result than that of the conventional method.Keywords: Color contrast enhancement, color quantization, color segmentation, image posterization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675395 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.
Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235394 Developmental Differences in the Construction of Concepts by Children from 3 to 14-Year-Olds: Perception, Language and Instruction
Authors: Mehmet Ozcan
Abstract:
This study was designed to investigate the relationship between language and children’s construction of the concept of objects, actions, and states. Participants of this study are 120 children whose ages range from 3 to 14 years. Ten children participated from each age group and 10 adults participated as normative group. Data were collected using 28 words which were identified and grouped according to the purpose of this study. Participants were asked the question “What is x?’ for each word in a reserved room. The audio recorded data were transcribed and coded. The data were analyzed primarily qualitatively but quantitatively as well to support qualitative findings. The findings reveal that younger children rely more on their perceptual experience and linguistic input while 7-year-olds and older ones rely more on instructional language in the construction of the concepts related to objects, actions and states. Adults differ from all age groups with their usage of metaphors to refer to objects. It has been noted that linguistic, perceptual and instructional experiences work in an interwoven way but each one seems to be dominant at certain ages.
Keywords: Cognition, concept construction, first language acquisition, language, thought.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115393 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot
Authors: Jungho Choi, Youngwan Cho
Abstract:
This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293392 3DARModeler: a 3D Modeling System in Augmented Reality Environment
Authors: Trien V. Do, Jong-Weon Lee
Abstract:
This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645391 Animation of Objects on the Website by Application of CSS3 Language
Authors: Vladimir Simovic, Matija Varga, Robert Svetlacic
Abstract:
Scientific work analytically explores and demonstrates techniques that can animate objects and geometric characters using CSS3 language by applying proper formatting and positioning of elements. This paper presents examples of optimum application of the CSS3 descriptive language when generating general web animations (e.g., billiards and movement of geometric characters, etc.). The paper presents analytically, the optimal development and animation design with the frames within which the animated objects are. The originally developed content is based on the upgrading of existing CSS3 descriptive language animations with more complex syntax and project-oriented work. The purpose of the developed animations is to provide an overview of the interactive features of CSS3 descriptive language design for computer games and the animation of important analytical data based on the web view. It has been analytically demonstrated that CSS3 as a descriptive language allows inserting of various multimedia elements into websites for public and internal sites.
Keywords: Animation recording, web page graphics, HTML5 forms, Cascading Style Sheets 3 - CSS3, man-computer interaction, KML animation presenting format, GML, Google Earth Professional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808390 PEIBM- Perceiving Emotions using an Intelligent Behavioral Model
Authors: Maryam Humayun, Zafar I. Malik, Shaukat Ali
Abstract:
Computer animation is a widely adopted technique used to specify the movement of various objects on screen. The key issue of this technique is the specification of motion. Motion Control Methods are such methods which are used to specify the actions of objects. This paper discusses the various types of motion control methods with special focus on behavioral animation. A behavioral model is also proposed which takes into account the emotions and perceptions of an actor which in turn generate its behavior. This model makes use of an expert system to generate tasks for the actors which specify the actions to be performed in the virtual environment.
Keywords: Behavioral animation, emotion, expert system, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394389 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910388 Optimizing Allocation of Two Dimensional Irregular Shapes using an Agent Based Approach
Authors: Ramin Halavati, Saeed B. Shouraki, Mahdieh Noroozian, Saman H. Zadeh
Abstract:
Packing problems arise in a wide variety of application areas. The basic problem is that of determining an efficient arrangement of different objects in a region without any overlap and with minimal wasted gap between shapes. This paper presents a novel population based approach for optimizing arrangement of irregular shapes. In this approach, each shape is coded as an agent and the agents' reproductions and grouping policies results in arrangements of the objects in positions with least wasted area between them. The approach is implemented in an application for cutting sheets and test results on several problems from literature are presented.Keywords: Optimization, Bin Packing, Agent Based Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494387 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284386 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The modern Artificial Narrow Intelligence (ANI) models cannot: a) independently, situationally, and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, and cognize under uncertainty and changing of the environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU). This system uses a neural network as its computational memory, and activates functions of the perception, identification of real objects, fuzzy situational control, and forming images of these objects. These images and objects are used for modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision Making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, and Wisdom. In doing so are performed analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge of the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of situational control, fuzzy logic, psycholinguistics, informatics, and modern possibilities of data science were applied. The proposed self-controlled system of brain and mind is oriented on use as a plug-in in multilingual subject applications.
Keywords: Computational psycholinguistic cognitive brain and mind system, situational fuzzy control, uncertainty, AI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411385 A Self Configuring System for Object Recognition in Color Images
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.
Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408384 Learning Objects: A New Paradigm for ELearning Resource Development for Secondary Schools in Tanzania
Authors: S. K. Lujara, M. M. Kissaka, E. P. Bhalalusesa, L. Trojer
Abstract:
The Information and Communication Technologies (ICTs), and the Wide World Web (WWW) have fundamentally altered the practice of teaching and learning world wide. Many universities, organizations, colleges and schools are trying to apply the benefits of the emerging ICT. In the early nineties the term learning object was introduced into the instructional technology vernacular; the idea being that educational resources could be broken into modular components for later combination by instructors, learners, and eventually computes into larger structures that would support learning [1]. However in many developing countries, the use of ICT is still in its infancy stage and the concept of learning object is quite new. This paper outlines the learning object design considerations for developing countries depending on learning environment.Keywords: e-Learning resources, granularity, learning objects, secondary schools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623383 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764382 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.
Keywords: Pose estimation, deep learning, point cloud, bin-picking, 3D computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826381 Object Recognition in Color Images by the Self Configuring System MEMORI
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a self configuring and highly user-friendly tool.Keywords: Automatic Object Recognition, Clustering, Contentbased Image Retrieval System, Image Segmentation, Region Adjacency Graph, Region Grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202380 Object Tracking System Using Camshift, Meanshift and Kalman Filter
Authors: Afef Salhi, Ameni Yengui Jammaoussi
Abstract:
This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.
Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8250379 A Metametadata Architecture forPedagogic Data Description
Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah
Abstract:
This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.Keywords: Metadata, metametadata, semantic, ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514378 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Z. Nougrara
Abstract:
In this paper we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: Satellite image, road network, nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698377 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model
Authors: Chiung-Hui Chen
Abstract:
Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward an intelligent design, to assist designer to retrieve information and review event pattern of past and present.Keywords: Digital diagram, information model, context aware, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855