Search results for: hollow reinforced concrete beams
1164 Effect of Stirrup Corrosion on Concrete Confinement Strength
Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya
Abstract:
This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.
Keywords: Bridge, column, concrete, corrosion, inspection, stirrup reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14761163 Mechanical Properties of Fibre Reinforced Concrete - A Comparative Experimental Study
Authors: Amir M. Alani, Morteza Aboutalebi
Abstract:
This paper in essence presents comparative experimental data on the mechanical performance of steel and synthetic fibre-reinforced concrete under compression, tensile split and flexure. URW1050 steel fibre and HPP45 synthetic fibre, both with the same concrete design mix, have been used to make cube specimens for a compression test, cylinders for a tensile split test and beam specimens for a flexural test. The experimental data demonstrated steel fibre reinforced concrete to be stronger in flexure at early stages, whilst both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack controlHPP45 was preferable.
Keywords: Steel Fibre, Synthetic Fibre, Fibre Reinforced Concrete, Failure, Ductility, Experimental Study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74411162 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.
Keywords: Concrete, mixing ratio, textile, TRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131161 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-tai Jung, Sung-yong Choi, Young-hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.
Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071160 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.
Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13651159 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab
Authors: V. Přivřelová
Abstract:
Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.
Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25201158 Investigating the Capacity of Ultimate Torsion of Concrete Prismatic Beams with Transverse Spiral Bars
Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin
Abstract:
In this paper, the torsion capacity of ultimate point on rectangular beams with spiral reinforcements in the torsion direction and its anti-direction are investigated. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. It was observed that, spirallyreinforced prismatic beam and beam with spiral links, show lower torsion capacity than beam with normal links also in anti-direction. The result is that the concrete regulations are violated in this case.
Keywords: RC beam, ultimate torsion, finite element, prismatic beams, spirally tie.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051157 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature
Authors: L. Dahmani, M.Kouane
Abstract:
In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36941156 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.
Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741155 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures
Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi
Abstract:
Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay failure of repair mortar, and thus, provide sufficient compatibility. Hence, this work presents a study on suitability of WTRAA-based materials as mortars for repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as alkaline activator, and different gradation of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates promising application of WTRAA mortars in practical repairs of concrete structures.
Keywords: Alkali-activated mortars, concrete repair, mortar compatibility flexural strength, waste tire rubber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4521154 Rehabilitation of Reinforced Concrete Columns
Authors: Madi Rafik, Guenfoud Mohamed
Abstract:
In recent years, rehabilitation has been the subject of extensive research due to increased spending on building work and repair of built works. In all cases, it is absolutely essential to carry out methods of strengthening or repair of structural elements, and that following an inspection analysis and methodology of a correct diagnosis. The reinforced concrete columns are important elements in building structures. They support the vertical loads and provide bracing against the horizontal loads. This research about the behavior of reinforced concrete rectangular columns, rehabilitated by concrete liner, confinement FRP fabric, steel liner or cage formed by metal corners. It allows comparing the contributions of different processes used perspective section resistance elements rehabilitated compared to that is not reinforced or repaired. The different results obtained revealed a considerable gain in bearing capacity failure of reinforced sections cladding concrete, metal bracket, steel plates and a slight improvement to the section reinforced with fabric FRP. The use of FRP does not affect the weight of the structures, but the use of different techniques cladding increases the weight of elements rehabilitated and therefore the weight of the building which requires resizing foundations.
Keywords: cladding, Rehabilitation, reinforced concrete columns, confinement, composite materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36861153 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns
Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez
Abstract:
Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as crosssection properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.
Keywords: Columns, plastic hinge length, regression analysis, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42751152 Analysis of the Influence of Reshoring on the Structural Behavior of Reinforced Concrete Beams
Authors: Keith Danila Aquino Neves, Júlia Borges dos Santos
Abstract:
There is little published research about the influence of execution methods on structural behavior. Structural analysis is typically based on a constructed building, considering the actions of all forces under which it was designed. However, during construction, execution loads do not match those designed, and in some cases the loads begin to act when the concrete has not yet reached its maximum strength. Changes to structural element support conditions may occur, resulting in unforeseen alterations to the structure’s behavior. Shoring is an example of a construction process that, if executed improperly, will directly influence the structural performance, and may result in unpredicted cracks and displacements. The NBR 14931/2004 standard, which guides the execution of reinforced concrete structures, mentions that shoring must be executed in a way that avoids unpredicted loads and that it may be removed after previous analysis of the structure’s behavior by the professional responsible for the structure’s design. Differences in structural behavior are reduced for small spans. It is important to qualify and quantify how the incorrect placement of shores can compromise a structure’s safety. The results of this research allowed a more precise acknowledgment of the relationship between spans and loads, for which the influence of execution processes can be considerable, and reinforced that civil engineering practice must be performed with the presence of a qualified professional, respecting existing standards’ guidelines.
Keywords: Structural analysis, structural behavior, reshoring, static scheme, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7771151 Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading
Authors: DucKien Thai, Seung EockKim
Abstract:
A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.
Keywords: Missile Impact, Reinforced Concrete Walls, LSDYNA, Dynamic Analysis, Punching Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25571150 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.
Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14161149 Reliability of Slender Reinforced Concrete Columns: Part 1
Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh
Abstract:
The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.Keywords: Reliability, reinforced concrete, safety, slender column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711148 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete
Authors: H. A. Alguhi, W. A. Elsaigh
Abstract:
This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.Keywords: Tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701147 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.
Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.
Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30091146 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes
Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini
Abstract:
Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.
Keywords: Modelling, Monte Carlo Simulations, Probabilistic Models, Data Clustering, Reinforced Concrete Members, Structural Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091145 Axisymmetric Vibration of Pyrocomposite Hollow Cylinder
Authors: V. K. Nelson, S. Karthikeyan
Abstract:
Axisymmetric vibration of an infinite Pyrocomposite circular hollow cylinder made of inner and outer pyroelectric layer of 6mm-class bonded together by a Linear Elastic Material with Voids (LEMV) layer is studied. The exact frequency equation is obtained for the traction free surfaces with continuity condition at the interfaces. Numerical results in the form of data and dispersion curves for the first and second mode of the axisymmetric vibration of the cylinder BaTio3 / Adhesive / BaTio3 by taking the Adhesive layer as an existing Carbon Fibre Reinforced Polymer (CFRP) are compared with a hypothetical LEMV layer with and without voids and as well with a pyroelectric hollow cylinder. The damping is analyzed through the imaginary parts of the complex frequencies.Keywords: Axisymmetric vibration, CFRP, hollow cylinders, LEMV, pyrocomposite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031144 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self-Compacting Concrete
Authors: Ž. Rudžionis, P. Grigaliūnas, D. Vaičiukynienė
Abstract:
By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as secondary raw materials are not in use properly and large amount of it is collected without a clear view of its usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear pozzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.
Keywords: Self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological properties of concrete, slump flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801143 Sustainability of Carbon Nanotube-Reinforced Concrete
Authors: Rashad Al Araj, Adil K. Tamimi
Abstract:
Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.
Keywords: Sustainability, carbon nanotube, microsilica, concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771142 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.
Keywords: Reinforced Concrete, FRP Laminate, Flexural Capacity, Ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26161141 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.
Keywords: Concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9901140 Earthquake Analysis of Reinforce Concrete Framed Structures with Added Viscous Dampers
Authors: F. Hejazi, J. Noorzaei, M. S. Jaafar, A. A. Abang Abdullah
Abstract:
This paper describes the development of a numerical finite element algorithm used for the analysis of reinforced concrete structure equipped with shakes energy absorbing device subjected to earthquake excitation. For this purpose a finite element program code for analysis of reinforced concrete frame buildings is developed. The performance of developed program code is evaluated by analyzing of a reinforced concrete frame buildings model. The results are show that using damper device as seismic energy dissipation system effectively can reduce the structural response of framed structure during earthquake occurrence.
Keywords: Viscous Damper, finite element, program coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001139 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10041138 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression
Authors: A. A. Okeola, T. I. Sijuade
Abstract:
Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.
Keywords: Compressive strength, plastic fibre, concrete, curing, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691137 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach
Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi
Abstract:
The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.
Keywords: Reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6801136 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13441135 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing
Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia
Abstract:
In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673