Search results for: discrimination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 108

Search results for: discrimination

48 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
47 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks

Authors: L. Salhi, M. Talbi, A. Cherif

Abstract:

This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.

Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
46 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data

Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch

Abstract:

It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.

Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
45 Automatic Musical Genre Classification Using Divergence and Average Information Measures

Authors: Hassan Ezzaidi, Jean Rouat

Abstract:

Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.

Keywords: Audio feature, information measures, music genre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
44 Drug Abuse among Immigrant Youth in Canada

Authors: Qin Wei

Abstract:

There has been an increased number of immigrants arriving in Canada and a concurrent rise in the number of immigrant youth suffering from drug abuse. Immigrant youths’ drug abuse has become a significant social and public health concern for researchers. This paper explores the nature of immigrant youths’ drug abuse by examining the factors influencing the onset of substance misuse, the barriers that discourage youth to seek out treatment, and how to resolve addictions amidst immigrant youth. Findings demonstrate that diminished parental supervision, acculturation challenges, peer conformity, discrimination, and ethnic marginalization are all significant factors influencing youth to use drugs as an outlet for their pain, while culturally incompetent care and fear of family and culture-based addiction stigma act as barriers discouraging youth from seeking out addiction support. To resolve addiction challenges amidst immigrant youth, future research should focus on promoting and implementing culturally sensitive practices and psychoeducational initiatives into immigrant communities and within public health policies.

Keywords: Approaches, barriers, drug abuse, Canada, immigrant youth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
43 Effect of Wind and Humidity on Microwave Links in North West Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Keywords: Attenuation, scattering, transmission loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
42 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
41 Swarmed Discriminant Analysis for Multifunction Prosthesis Control

Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily

Abstract:

One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.

Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
40 Correlation between Capacitance and Dissipation Factor used for Assessment of Stator Insulation

Authors: José Luis Oslinger, Luis Carlos Castro

Abstract:

Measurements of capacitance C and dissipation factor tand of the stator insulation system provide useful information about internal defects within the insulation. The index k is defined as the proportionality constant between the changes at high voltage of capacitance DC and of the dissipation factor Dtand . DC and Dtand values were highly correlated when small flat defects were within the insulation and that correlation was lost in the presence of large narrow defects like electrical treeing. The discrimination between small and large defects is made resorting to partial discharge PD phase angle analysis. For the validation of the results, C and tand measurements were carried out in a 15MVA 4160V steam turbine turbogenerator placed in a sugar mill. In addition, laboratory test results obtained by other authors were analyzed jointly. In such laboratory tests, model coil bars subjected to thermal cycling resulted highly degraded and DC and Dtand values were not correlated. Thus, the index k could not be calculated.

Keywords: Aging, capacitance, dissipation factor, electrical treeing, insulation condition, partial discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942
39 Assessment of Time-Lapse in Visible and Thermal Face Recognition

Authors: Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh

Abstract:

Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.

Keywords: Infrared Face recognition, Time-lapse, Zernike moment invariants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
38 Educational and Technological Perspectives in Doraemon - Hope and Dreams in Doraemon’s Gadgets

Authors: Miho Tsukamoto

Abstract:

A Japanese manga character, Doraemon, was made by Fujiko F. Fujio in 1969, was made into animation in 1973. The main character, Doraemon, is a robot cat, and is a well-known Japanese animated character. However, Doraemon is not only regarded as an animation character but it is also used in educational and technological programs in Japan. This paper focuses on the background of Doraemon, educational and technological perspectives on Doraemon, and comparison of the original Japanese animation and the US remade version, and the animator Fujiko’s dreams and hopes for Doraemon will be examined. Since Doraemon has been exported as animation and manga to overseas, perspectives toward Doraemon have changed. For example, changes of stories and characters can been seen in the present Doraemon animation. Not only the overseas TV productions which broadcast Doraemon but also the Japanese production has to consider violence, sexuality, etc. when editing episodes. Because of representation of cultural differences, Japanese animation is thought to contain more violence, discrimination, and sexuality in animation. With responses from overseas, the Japanese production was cautious about the US remade version. They cared about the US Broadcast Standard, and tried to consider US customs and culture in the US remade version. Seeing the difference, acculturation is necessary for exports of animation overseas. Moreover, observing different aspects of Doraemon domestically, Doraemon provides dreams and hopes to children.

Keywords: Animation, Change, Doraemon, Gadgets, Manga, Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5572
37 Alignment of Emission Gamma Ray Sources with Nai(Ti) Scintillation Detectors by Two Laser Beams to Pre-Operation using Alternating Minimization Technique

Authors: Abbas Ali Mahmood Karwi

Abstract:

Accurate timing alignment and stability is important to maximize the true counts and minimize the random counts in positron emission tomography So signals output from detectors must be centering with the two isotopes to pre-operation and fed signals into four units of pulse-processing units, each unit can accept up to eight inputs. The dual source computed tomography consist two units on the left for 15 detector signals of Cs-137 isotope and two units on the right are for 15 detectors signals of Co-60 isotope. The gamma spectrum consisting of either single or multiple photo peaks. This allows for the use of energy discrimination electronic hardware associated with the data acquisition system to acquire photon counts data with a specific energy, even if poor energy resolution detectors are used. This also helps to avoid counting of the Compton scatter counts especially if a single discrete gamma photo peak is emitted by the source as in the case of Cs-137. In this study the polyenergetic version of the alternating minimization algorithm is applied to the dual energy gamma computed tomography problem.

Keywords: Alignment, Spectrum, Laser, Detectors, Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
36 Fingerprint Identification using Discretization Technique

Authors: W. Y. Leng, S. M. Shamsuddin

Abstract:

Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.

Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
35 New Vision of 'Social Europe': Renationalising the Integration Process in the Internal Market of the European Union

Authors: Robert Grzeszczak, Magdalena Gniadzik

Abstract:

The article deals with one of the most significant issues concerning the functioning of the internal market of the European Union – the free movement of workers and free movement of persons. The purpose is to identify the political and legal effects of the “renationalisation process” on the EU and its Member States. The concept of renationalisation is expressed through Member States’ aim to verify the relationship with the EU. The tendency is more visible in the public opinion of several MS’s of the ‘EU core’ and may be confirmed by the changes applied by the regulatory body. The thesis for the article is the return of renationalisation tendencies in the area of the Single Market, which is supported by, among others, an open criticism of the foundations of EU integration or considerations on withdrawal from the EU by some MS. This analysis will focus primarily on the effects that renationalisation may have on the free movement of persons. The free movement of persons is one of the key issues for the development of the European integration. It is still subject to theoretical reflections, new doubts and practical issues. The latest developments in politics, law and jurisprudence demonstrate the need to reflect on the attempts to redefine certain principles regarding migrant EU workers and their protection against nationality-based discrimination.

Keywords: European law, European Union, common market, free movement of workers, posting of workers, case law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
34 A Novel Nucleus-Based Classifier for Discrimination of Osteoclasts and Mesenchymal Precursor Cells in Mouse Bone Marrow Cultures

Authors: Andreas Heindl, Alexander K. Seewald, Martin Schepelmann, Radu Rogojanu, Giovanna Bises, Theresia Thalhammer, Isabella Ellinger

Abstract:

Bone remodeling occurs by the balanced action of bone resorbing osteoclasts (OC) and bone-building osteoblasts. Increased bone resorption by excessive OC activity contributes to malignant and non-malignant diseases including osteoporosis. To study OC differentiation and function, OC formed in in vitro cultures are currently counted manually, a tedious procedure which is prone to inter-observer differences. Aiming for an automated OC-quantification system, classification of OC and precursor cells was done on fluorescence microscope images based on the distinct appearance of fluorescent nuclei. Following ellipse fitting to nuclei, a combination of eight features enabled clustering of OC and precursor cell nuclei. After evaluating different machine-learning techniques, LOGREG achieved 74% correctly classified OC and precursor cell nuclei, outperforming human experts (best expert: 55%). In combination with the automated detection of total cell areas, this system allows to measure various cell parameters and most importantly to quantify proteins involved in osteoclastogenesis.

Keywords: osteoclasts, machine learning, ellipse fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
33 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji

Abstract:

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.

Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
32 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze

Abstract:

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
31 Outbound Tourism in Developed Countries: Analysis of the Trends, Behavior and the Transformation of the Moroccan Demand for International Travels

Authors: M. Boukhrouk, R. Ed-Dali

Abstract:

Outbound tourism in Morocco, as in the majority of developing countries, reveals some of the aspects of inequality between the north and the south. Considered by some researchers as one of the facets of the development crisis, access to tourism and especially international tourism is a chance for a small minority with financial means, while the vast portions of the population dream rather of immigrating to a developed country for the sake of improving their standard of living. The right to travel is also limited by visa requirements, procedures in host countries, security and technical measures and creates discrimination in the practice of tourism. These conditions do not seem to be favorable to the democratization of the practice of international tourism for the populations of the southern countries. This paper is a contribution to the reading of the trends of outbound tourism in developing countries through the example of Morocco. It highlights the different aspects of Moroccan outbound tourism, destinations and the behavior of tourists through an analysis of the offer of a sample of 50 travel agencies. In the same vein, it offers a reading grid of the possibilities offered for the development of outbound tourism and the various existing obstacles to the democratization of international outbound tourism in the southern countries. This reading reveals the transformation in the behavior of Moroccan international tourists as well as the profound changes in Moroccan society, through a model of statistical analysis.

Keywords: Demand, Hajj, Morocco, outbound tourism, tendency, Umrah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
30 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis

Authors: Young-Seok Choi

Abstract:

This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.

Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
29 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.

Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
28 Women with Disabilities: A Study of Contributions of Sexual and Reproductive Rights for Theology

Authors: Luciana Steffen

Abstract:

People with disabilities are often neglected in the exercise of their sexuality, facing several prejudices and discrimination in this area. For women with disabilities, the negligence is even major. Studies that relate sexual and reproductive rights with the experience of women with disabilities are rare, and in the field of Theology, practically nonexistent in Brazil. The aim of this work is to reflect on the relationship between women with disabilities, sexual and reproductive rights and Theology, according to a feminist perspective. The work is a literature review and involves the areas of Gender Studies, Disability Studies, Feminist Studies and Theology. In the article it will be addressed the relations between disability, sexual and reproductive rights, feminism, as well as the relations with the area of Theology, reflecting on these themes toward a fairer and more inclusive understanding of feminism, sexuality and women with disabilities. To reflect on sexual and reproductive rights of women with disabilities, it is important to reflect on religious concepts about the body, sexuality, reproduction and gender roles, because they are all connected. So, a critical analysis of traditional theological values taking into consideration the dimensions of sexuality and women with disability is important for a more liberating and inclusive understand about sexual and reproductive rights of women with disabilities. Theology should help the other areas in the understanding that all people have the right to live their lives with completeness, dignity and respect, so women with disabilities must have the opportunity of making their own choices on the fields of sexuality and reproduction.

Keywords: Disability, gender, sexual and reproductive rights, Theology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
27 Biological Characterization of the New Invasive Brine Shrimp Artemia franciscana in Tunisia: Sabkhet Halk El-Menzel

Authors: Hachem Ben Naceur, Amel Ben Rejeb Jenhani, Mohamed Salah Romdhane

Abstract:

Endemic Artemia franciscana populations can be found throughout the American continent and also as an introduced specie in several country all over the world, such as in the Mediterranean region where Artemia franciscana was identified as an invasive specie replacing native Artemia parthenogenetica and Artemia salina. In the present study, the characterization of the new invasive Artemia franciscana reported from Sabkhet Halk El-Menzel (Tunisia) was done based on the cysts biometry, nauplii instar-I length, Adult sexual dimorphism and fatty acid profile. The mean value of the diameter of non-decapsulated and decapsulated cysts, chorion thickness and naupliar length is 235.8, 226.3, 4.75 and 426.8 μm, respectively. Sexual dimorphism for adults specimen showed that maximal distance between compound eyes, diameter for compound eyes, length of first antenna and the abdomen length compared to the total body length ratio, are the most important variables for males and females discrimination with a total contribution of 62.39 %. The analysis of fatty acid methyl esters profile of decapsulated cysts resulted in low levels of linolenic acid (LLA, C18:3n-3) and high levels of eicosapentaenoic acid (EPA, C20:5n-3) with 3.11 and 11.10 %, respectively. Low quantity of docosahexaenoic acid (DHA, 22:6n-3) was also observed with 0.17 mg.g-1 dry weight.

Keywords: Invasive Artemia franciscana, biometry, sexualdimorphism, fatty acid, Tunisia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
26 Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Authors: R.S.Sabeenian, V.Palanisamy

Abstract:

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Keywords: crop weed discrimination, MRCSF, MRFM, Weeddetection, Spatial Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
25 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
24 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
23 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby

Abstract:

This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.

Keywords: Weed crop discrimination, macrosprayer, herbicide reduction, site-specific, sprayer-boom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
22 Spatial Correlation Analysis between Climate Factors and Plant Production in Asia

Authors: Yukiyo Yamamoto, Jun Furuya, Shintaro Kobayashi

Abstract:

Using 1km grid datasets representing monthly mean precipitation, monthly mean temperature, and dry matter production (DMP), we considered the regional plant production ability in Southeast and South Asia, and also employed pixel-by-pixel correlation analysis to assess the intensity of relation between climate factors and plant production. While annual DMP in South Asia was approximately less than 2,000kg, the one in most part of Southeast Asia exceeded 2,500 - 3,000kg. It suggested that plant production in Southeast Asia was superior to South Asia, however, Rain-Use Efficiency (RUE) representing dry matter production per 1mm precipitation showed that inland of Indochina Peninsula and India were higher than islands in Southeast Asia. By the results of correlation analysis between climate factors and DMP, while the area in most parts of Indochina Peninsula indicated negative correlation coefficients between DMP and precipitation or temperature, the area in Malay Peninsula and islands showed negative correlation to precipitation and positive one to temperature, and most part of India dominating South Asia showed positive to precipitation and negative to temperature. In addition, the areas where the correlation coefficients exceeded |0.8| were regarded as “susceptible" to climate factors, and the areas smaller than |0.2| were “insusceptible". By following the discrimination, the map implying expected impacts by climate change was provided.

Keywords: Asia, correlation analysis, plant production, precipitation, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
21 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
20 A Development of the Multiple Intelligences Measurement of Elementary Students

Authors: Chaiwat Waree

Abstract:

This research aims at development of the Multiple Intelligences Measurement of Elementary Students. The structural accuracy test and normality establishment are based on the Multiple Intelligences Theory of Gardner. This theory consists of eight aspects namely linguistics, logic and mathematics, visual-spatial relations, body and movement, music, human relations, self-realization/selfunderstanding and nature. The sample used in this research consists of elementary school students (aged between 5-11 years). The size of the sample group was determined by Yamane Table. The group has 2,504 students. Multistage Sampling was used. Basic statistical analysis and construct validity testing were done using confirmatory factor analysis. The research can be summarized as follows; 1. Multiple Intelligences Measurement consisting of 120 items is content-accurate. Internal consistent reliability according to the method of Kuder-Richardson of the whole Multiple Intelligences Measurement equals .91. The difficulty of the measurement test is between .39-.83. Discrimination is between .21-.85. 2). The Multiple Intelligences Measurement has construct validity in a good range, that is 8 components and all 120 test items have statistical significance level at .01. Chi-square value equals 4357.7; p=.00 at the degree of freedom of 244 and Goodness of Fit Index equals 1.00. Adjusted Goodness of Fit Index equals .92. Comparative Fit Index (CFI) equals .68. Root Mean Squared Residual (RMR) equals 0.064 and Root Mean Square Error of Approximation equals 0.82. 3). The normality of the Multiple Intelligences Measurement is categorized into 3 levels. Those with high intelligence are those with percentiles of more than 78. Those with moderate/medium intelligence are those with percentiles between 24 and 77.9. Those with low intelligence are those with percentiles from 23.9 downwards.

Keywords: Multiple Intelligences, Measurement, Elementary Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
19 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811