Search results for: Meta heuristic
259 Meta Model Based EA for Complex Optimization
Authors: Maumita Bhattacharya
Abstract:
Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiencyKeywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067258 A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems
Authors: R. Srinivasa Rao, S. V. L. Narasimham
Abstract:
This paper presents a novel approach for optimal reconfiguration of radial distribution systems. Optimal reconfiguration involves the selection of the best set of branches to be opened, one each from each loop, such that the resulting radial distribution system gets the desired performance. In this paper an algorithm is proposed based on simple heuristic rules and identified an effective switch status configuration of distribution system for the minimum loss reduction. This proposed algorithm consists of two parts; one is to determine the best switching combinations in all loops with minimum computational effort and the other is simple optimum power loss calculation of the best switching combination found in part one by load flows. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 33-bus system. The results show that the performance of the proposed method is better than that of the other methods.Keywords: Distribution system, network reconfiguration, powerloss reduction, radial network, heuristic technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775257 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: Job-shop scheduling, classification, constraints, objective functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928256 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216255 A Fast Block-based Evolutional Algorithm for Combinatorial Problems
Authors: Huang, Wei-Hsiu Chang, Pei-Chann, Wang, Lien-Chun
Abstract:
The problems with high complexity had been the challenge in combinatorial problems. Due to the none-determined and polynomial characteristics, these problems usually face to unreasonable searching budget. Hence combinatorial optimizations attracted numerous researchers to develop better algorithms. In recent academic researches, most focus on developing to enhance the conventional evolutional algorithms and facilitate the local heuristics, such as VNS, 2-opt and 3-opt. Despite the performances of the introduction of the local strategies are significant, however, these improvement cannot improve the performance for solving the different problems. Therefore, this research proposes a meta-heuristic evolutional algorithm which can be applied to solve several types of problems. The performance validates BBEA has the ability to solve the problems even without the design of local strategies.
Keywords: Combinatorial problems, Artificial Chromosomes, Blocks Mining, Block Recombination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417254 Meta-analysis of Performance: Summarizing Research for Implementation of Reconfigurability
Authors: Cesar H. Ortega Jimenez, Ignacio Eguia Salinas, Pedro Garrido Vega, Jose A. Dominguez Machuca
Abstract:
The aim of this study is to identify the conditions of implementation for reconfigurability in summarizing past flexible manufacturing systems (FMS) research by drawing overall conclusions from many separate High Performance Manufacturing (HPM) studies. Meta-analysis will be applied to links between HPM programs and their practices related to FMS and manufacturing performance with particular reference to responsiveness performance. More specifically, an application of meta-analysis will be made with reference to two of the main steps towards the development of an empirically-tested theory: testing the adequacy of the measurement of variables and testing the linkages between the variables.Keywords: FMS (flexible manufacturing system), HPM (highperformance manufacturing), reconfigurability, RMS (reconfigurablemanufacturing system), responsiveness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541253 Personas Help Understand Users’ Needs, Goals and Desires in an Online Institutional Repository
Authors: Maha ALjohani, James Blustein
Abstract:
Communicating users' needs, goals and problems help designers and developers overcome challenges faced by end users. Personas are used to represent end users’ needs. In our research, creating personas allowed the following questions to be answered: Who are the potential user groups? What do they want to achieve by using the service? What are the problems that users face? What should the service provide to them? To develop realistic personas, we conducted a focus group discussion with undergraduate and graduate students and also interviewed a university librarian. The personas were created to help evaluating the Institutional Repository that is based on the DSpace system. The profiles helped to communicate users' needs, abilities, tasks, and problems, and the task scenarios used in the heuristic evaluation were based on these personas. Four personas resulted of a focus group discussion with undergraduate and graduate students and from interviewing a university librarian. We then used these personas to create focused task-scenarios for a heuristic evaluation on the system interface to ensure that it met users' needs, goals, problems and desires. In this paper, we present the process that we used to create the personas that led to devise the task scenarios used in the heuristic evaluation as a follow up study of the DSpace university repository.Keywords: Heuristic Evaluation, Institutional Repositories, User Experience, Human Computer Interaction, User Profiles, Personas, Task Scenarios, Heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167252 Block Sorting: A New Characterization and a New Heuristic
Authors: Swapnoneel Roy, Ashok Kumar Thakur, Minhazur Rahman
Abstract:
The Block Sorting problem is to sort a given permutation moving blocks. A block is defined as a substring of the given permutation, which is also a substring of the identity permutation. Block Sorting has been proved to be NP-Hard. Until now two different 2-Approximation algorithms have been presented for block sorting. These are the best known algorithms for Block Sorting till date. In this work we present a different characterization of Block Sorting in terms of a transposition cycle graph. Then we suggest a heuristic, which we show to exhibit a 2-approximation performance guarantee for most permutations.Keywords: Block Sorting, Optical Character Recognition, Genome Rearrangements, Sorting Primitives, ApproximationAlgorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139251 Development of A Meta Description Language for Software/Hardware Cooperative Design and Verification for Model-Checking Systems
Authors: Katsumi Wasaki, Naoki Iwasaki
Abstract:
Model-checking tools such as Symbolic Model Verifier (SMV) and NuSMV are available for checking hardware designs. These tools can automatically check the formal legitimacy of a design. However, NuSMV is too low level for describing a complete hardware design. It is therefore necessary to translate the system definition, as designed in a language such as Verilog or VHDL, into a language such as NuSMV for validation. In this paper, we present a meta hardware description language, Melasy, that contains a code generator for existing hardware description languages (HDLs) and languages for model checking that solve this problem.Keywords: meta description language, software/hardware codesign, co-verification, formal verification, hardware compiler, modelchecking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464250 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks
Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha
Abstract:
Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.
Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702249 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis
Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang
Abstract:
The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.Keywords: Expectation-confirmation theory, expectation- confirmation model, meta-analysis, meta-analytic structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730248 A hybrid Tabu Search Algorithm to Cell Formation Problem and its Variants
Authors: Tai-Hsi Wu, Jinn-Yi Yeh, Chin-Chih Chang
Abstract:
Cell formation is the first step in the design of cellular manufacturing systems. In this study, a general purpose computational scheme employing a hybrid tabu search algorithm as the core is proposed to solve the cell formation problem and its variants. In the proposed scheme, great flexibilities are left to the users. The core solution searching algorithm embedded in the scheme can be easily changed to any other meta-heuristic algorithms, such as the simulated annealing, genetic algorithm, etc., based on the characteristics of the problems to be solved or the preferences the users might have. In addition, several counters are designed to control the timing of conducting intensified solution searching and diversified solution searching strategies interactively.Keywords: Cell formation problem, Tabu search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739247 Application of Ant Colony Optimization for Multi-objective Production Problems
Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat
Abstract:
This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.
Keywords: Ant colony optimization, multi-objective problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898246 An Algorithm for the Map Labeling Problem with Two Kinds of Priorities
Authors: Noboru Abe, Yoshinori Amai, Toshinori Nakatake, Sumio Masuda, Kazuaki Yamaguchi
Abstract:
We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities.
Keywords: Map labeling, greedy algorithm, heuristic algorithm, priority.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451245 Bee Colony Optimization Applied to the Bin Packing Problem
Authors: Kenza Aida Amara, Bachir Djebbar
Abstract:
We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.Keywords: Bee colony optimization, bin packing, heuristic algorithm, pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102244 Heuristic Method for Judging the Computational Stability of the Difference Schemes of the Biharmonic Equation
Authors: Guang Zeng, Jin Huang, Zicai Li
Abstract:
In this paper, we research the standard 13-point difference schemes for solving the biharmonic equation. Heuristic method is applied to judging the stability of multi-level difference schemes of the biharmonic equation. It is showed that the standard 13-point difference schemes are stable.
Keywords: Finite-difference equation, computational stability, hirt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359243 Meta-Analysis of the Impact of Positive Psychological Capital on Employees Outcomes: The Moderating Role of Tenure
Authors: Hyeondal Jeong, Yoonjung Baek
Abstract:
This research examines the effects of positive psychological capital (or PsyCap) on employee’s outcomes (satisfaction, commitment, organizational citizenship behavior, innovation behavior and individual creativity). This study conducted a meta-analysis of articles published in the Republic of Korea. As a result, positive psychological capital has a positive effect on the behavior of employees. Heterogeneity was identified among the studies included in the analysis and the context factors were analyzed; the study proposes contextual factors such as team tenure. The moderating effect of team tenure was not statistically significant. The implications were discussed based on the analysis results.
Keywords: Positive psychological capital, satisfaction, commitment, OCB, creativity, meta-analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689242 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.
Keywords: Meta-modal, objective function, steel frames, seismic analysis, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333241 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.
Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817240 Scheduling a Flexible Flow Shops Problem using DEA
Authors: Fatemeh Dadkhah, Hossein Ali Akbarpour
Abstract:
This paper considers a scheduling problem in flexible flow shops environment with the aim of minimizing two important criteria including makespan and cumulative tardiness of jobs. Since the proposed problem is known as an Np-hard problem in literature, we have to develop a meta-heuristic to solve it. We considered general structure of Genetic Algorithm (GA) and developed a new version of that based on Data Envelopment Analysis (DEA). Two objective functions assumed as two different inputs for each Decision Making Unit (DMU). In this paper we focused on efficiency score of DMUs and efficient frontier concept in DEA technique. After introducing the method we defined two different scenarios with considering two types of mutation operator. Also we provided an experimental design with some computational results to show the performance of algorithm. The results show that the algorithm implements in a reasonable time.Keywords: Data envelopment analysis, Efficiency, Flexible flow shops, Genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814239 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm
Authors: R.A.Mahdavinejad
Abstract:
In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.
Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669238 An Efficient Algorithm for Delay Delay-variation Bounded Least Cost Multicast Routing
Authors: Manas Ranjan Kabat, Manoj Kumar Patel, Chita Ranjan Tripathy
Abstract:
Many multimedia communication applications require a source to transmit messages to multiple destinations subject to quality of service (QoS) delay constraint. To support delay constrained multicast communications, computer networks need to guarantee an upper bound end-to-end delay from the source node to each of the destination nodes. This is known as multicast delay problem. On the other hand, if the same message fails to arrive at each destination node at the same time, there may arise inconsistency and unfairness problem among users. This is related to multicast delayvariation problem. The problem to find a minimum cost multicast tree with delay and delay-variation constraints has been proven to be NP-Complete. In this paper, we propose an efficient heuristic algorithm, namely, Economic Delay and Delay-Variation Bounded Multicast (EDVBM) algorithm, based on a novel heuristic function, to construct an economic delay and delay-variation bounded multicast tree. A noteworthy feature of this algorithm is that it has very high probability of finding the optimal solution in polynomial time with low computational complexity.Keywords: EDVBM, Heuristic algorithm, Multicast tree, QoS routing, Shortest path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643237 Proposal for a Generic Context Metamodel
Authors: Jaouadi Imen, Ben Djemaa Raoudha, Ben Abdallah Hanene
Abstract:
The access to relevant information that is adapted to user’s needs, preferences and environment is a challenge in many applications running. That causes an appearance of context-aware systems. To facilitate the development of this class of applications, it is necessary that these applications share a common context metamodel. In this article, we will present our context metamodel that is defined using the OMG Meta Object facility (MOF).This metamodel is based on the analysis and synthesis of context concepts proposed in literature.
Keywords: Context, metamodel, Meta Object Facility (MOF), awareness system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582236 A New Tool for Global Optimization Problems- Cuttlefish Algorithm
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.
Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831235 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean-Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods
Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871234 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.
Keywords: Composite material, crashworthiness, finite element analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129233 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076232 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: Heuristic, MIP model, Remedial course, School, Timetabling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634231 Improved Artificial Immune System Algorithm with Local Search
Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi
Abstract:
The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithmsKeywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892230 Peer Assessment in the Context of Project-Based Learning Online
Authors: Y. Benjelloun Touimi, N. Faddouli, S. Bennani, M. Khalidi Idrissi
Abstract:
The pedagogy project has been proven as an active learning method, which is used to develop learner-s skills and knowledge.The use of technology in the learning world, has filed several gaps in the implementation of teaching methods, and online evaluation of learners. However, the project methodology presents challenges in the assessment of learners online. Indeed, interoperability between E-learning platforms (LMS) is one of the major challenges of project-based learning assessment. Firstly, we have reviewed the characteristics of online assessment in the context of project-based teaching. We addressed the constraints encountered during the peer evaluation process. Our approach is to propose a meta-model, which will describe a language dedicated to the conception of peer assessment scenario in project-based learning. Then we illustrate our proposal by an instantiation of the meta-model through a business process in a scenario of collaborative assessment on line.Keywords: Online project based learning, meta-model, peer assessment process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372