Search results for: data exchange.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7790

Search results for: data exchange.

6950 Risk Classification of SMEs by Early Warning Model Based on Data Mining

Authors: Nermin Ozgulbas, Ali Serhan Koyuncugil

Abstract:

One of the biggest problems of SMEs is their tendencies to financial distress because of insufficient finance background. In this study, an Early Warning System (EWS) model based on data mining for financial risk detection is presented. CHAID algorithm has been used for development of the EWS. Developed EWS can be served like a tailor made financial advisor in decision making process of the firms with its automated nature to the ones who have inadequate financial background. Besides, an application of the model implemented which covered 7,853 SMEs based on Turkish Central Bank (TCB) 2007 data. By using EWS model, 31 risk profiles, 15 risk indicators, 2 early warning signals, and 4 financial road maps has been determined for financial risk mitigation.

Keywords: Early Warning Systems, Data Mining, Financial Risk, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
6949 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction

Authors: Hanfei Tuo, Yanzhong Li

Abstract:

This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.

Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792
6948 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City

Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jos´e L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jos´e F. Vicent

Abstract:

This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people‘s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.

Keywords: Social networks, Foursquare, spatial analysis, data visualization, geocomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
6947 Meta Random Forests

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

Keywords: Random Forests [RF], ensembles, UCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
6946 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
6945 Studies on Determination of the Optimum Distance Between the Tmotes for Optimum Data Transfer in a Network with WLL Capability

Authors: N C Santhosh Kumar, N K Kishore

Abstract:

Using mini modules of Tmotes, it is possible to automate a small personal area network. This idea can be extended to large networks too by implementing multi-hop routing. Linking the various Tmotes using Programming languages like Nesc, Java and having transmitter and receiver sections, a network can be monitored. It is foreseen that, depending on the application, a long range at a low data transfer rate or average throughput may be an acceptable trade-off. To reduce the overall costs involved, an optimum number of Tmotes to be used under various conditions (Indoor/Outdoor) is to be deduced. By analyzing the data rates or throughputs at various locations of Tmotes, it is possible to deduce an optimal number of Tmotes for a specific network. This paper deals with the determination of optimum distances to reduce the cost and increase the reliability of the entire sensor network with Wireless Local Loop (WLL) capability.

Keywords: Average throughput, data rate, multi-hop routing, optimum data transfer, throughput, Tmotes, wireless local loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
6944 Unified Structured Process for Health Analytics

Authors: Supunmali Ahangama, Danny Chiang Choon Poo

Abstract:

Health analytics (HA) is used in healthcare systems for effective decision making, management and planning of healthcare and related activities. However, user resistances, unique position of medical data content and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. Success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose a HA process model with features from rational unified process (RUP) model and agile methodology.

Keywords: Agile methodology, health analytics, unified process model, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
6943 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
6942 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
6941 Calculus Logarithmic Function for Image Encryption

Authors: Adil AL-Rammahi

Abstract:

When we prefer to make the data secure from various attacks and fore integrity of data, we must encrypt the data before it is transmitted or stored. This paper introduces a new effective and lossless image encryption algorithm using a natural logarithmic function. The new algorithm encrypts an image through a three stage process. In the first stage, a reference natural logarithmic function is generated as the foundation for the encryption image. The image numeral matrix is then analyzed to five integer numbers, and then the numbers’ positions are transformed to matrices. The advantages of this method is useful for efficiently encrypting a variety of digital images, such as binary images, gray images, and RGB images without any quality loss. The principles of the presented scheme could be applied to provide complexity and then security for a variety of data systems such as image and others.

Keywords: Linear Systems, Image Encryption, Calculus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
6940 Student Feedback and Its Impact on Fostering the Quality of Teaching at the Academia

Authors: S. Vanker, A. Aaver, A. Roio, L. Nuut

Abstract:

To be sure about the effective and less effective/ineffective approaches to course instruction, we hold the opinion that the faculty members need regular feedback from their students in order to be aware of how well or unwell their teaching styles have worked when instructing the courses. It can be confirmed without a slightest hesitation that undergraduate students’ motivated-ness can be sustained when continually improving the quality of teaching and properly sequencing the academic courses both, in the curricula and timetables. At Estonian Aviation Academy, four different forms of feedback are used: Lecture monitoring, questionnaires for all students, study information system subject monitoring and direct feedback received by the lecturer. Questionnaires for all students are arranged once during a study year and separately for the first year and senior students. The results are discussed in academic departments together with student representatives, analyzed with the teaching staff and, if needed, improvements are suggested. In addition, a monitoring system is planned where a lecturer acts in both roles – as an observer and as the lecturer. This will foster better exchange of experience and through this help to make the whole study process more interesting.

Keywords: Student support, learner motivation, feedback, undergraduate education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
6939 Intelligent BRT in Tehran

Authors: P. Parvizi, S. Mohammadi

Abstract:

an intelligent BRT system is necessary when communities looking for new ways to use high capacity rapid transit at a reduced cost.This paper will describe the intelligent control system that works with Datacenter. With the help of GPS system, the data center can monitor the situation of each bus and bus station. Through RFID technology, bus station and traffic light can transfer data with bus and by Wimax communication technology all of parts can talk together; data center learns all information about the location of bus, the arrival of bus in each station and the number of passengers in station and bus.Finally, the paper presents the case study of those theories in Tehran BRT.

Keywords: TehranBRT, RFID, Intelligent Transportation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
6938 Spread Spectrum Image Watermarking for Secured Multimedia Data Communication

Authors: Tirtha S. Das, Ayan K. Sau, Subir K. Sarkar

Abstract:

Digital watermarking is a way to provide the facility of secure multimedia data communication besides its copyright protection approach. The Spread Spectrum modulation principle is widely used in digital watermarking to satisfy the robustness of multimedia signals against various signal-processing operations. Several SS watermarking algorithms have been proposed for multimedia signals but very few works have discussed on the issues responsible for secure data communication and its robustness improvement. The current paper has critically analyzed few such factors namely properties of spreading codes, proper signal decomposition suitable for data embedding, security provided by the key, successive bit cancellation method applied at decoder which have greater impact on the detection reliability, secure communication of significant signal under camouflage of insignificant signals etc. Based on the analysis, robust SS watermarking scheme for secure data communication is proposed in wavelet domain and improvement in secure communication and robustness performance is reported through experimental results. The reported result also shows improvement in visual and statistical invisibility of the hidden data.

Keywords: Spread spectrum modulation, spreading code, signaldecomposition, security, successive bit cancellation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
6937 The Self-Energy of an Ellectron Bound in a Coulomb Field

Authors: J. Zamastil, V. Patkos

Abstract:

Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.

Keywords: Hydrogen-like atoms, self-energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
6936 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes

Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu

Abstract:

In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.

Keywords: Industrial data matrix code, Hough transform, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
6935 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda

Abstract:

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
6934 An Intelligent Human-Computer Interaction System for Decision Support

Authors: Chee Siong Teh, Chee Peng Lim

Abstract:

This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.

Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
6933 Implementation of Security Algorithms for u-Health Monitoring System

Authors: Jiho Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Keywords: biosignal, data encryption, security measures, u-health

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
6932 A Symbol by Symbol Clustering Based Blind Equalizer

Authors: Kristina Georgoulakis

Abstract:

A new blind symbol by symbol equalizer is proposed. The operation of the proposed equalizer is based on the geometric properties of the two dimensional data constellation. An unsupervised clustering technique is used to locate the clusters formed by the received data. The symmetric properties of the clusters labels are subsequently utilized in order to label the clusters. Following this step, the received data are compared to clusters and decisions are made on a symbol by symbol basis, by assigning to each data the label of the nearest cluster. The operation of the equalizer is investigated both in linear and nonlinear channels. The performance of the proposed equalizer is compared to the performance of a CMAbased blind equalizer.

Keywords: Blind equalization, channel equalization, cluster based equalisers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
6931 Underpricing of IPOs during Hot and Cold Market Periods on the South African Stock Exchange (JSE)

Authors: Brownhilder N. Neneh, A. Van Aardt Smit

Abstract:

Underpricing is one anomaly in initial public offerings (IPO) literature that has been widely observed across different stock markets with different trends emerging over different time periods. This study seeks to determine how IPOs on the JSE performed on the first day, first week and first month over the period of 1996-2011. Underpricing trends are documented for both hot and cold market periods in terms of four main sectors (cyclical, defensive, growth stock and interest rate sensitive stocks). Using a sample of 360 listed companies on the JSE, the empirical findings established that IPOs on the JSE are significantly underpriced with an average market adjusted first day return of 62.9%. It is also established that hot market IPOs on the JSE are more underpriced than the cold market IPOs. Also observed is the fact that as the offer price per share increases above the median price for any given period, the level of underpricing decreases substantially. While significant differences exist in the level of underpricing of IPOs in the four different sectors in the hot and cold market periods, interest rates sensitive stocks showed a different trend from the other sectors and thus require further investigation to uncover this pattern.

Keywords: Underpricing, hot and cold markets, South Africa, JSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4201
6930 Zero Inflated Models for Overdispersed Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.

Keywords: Overdispersed count data, model selection methods, likelihood ratio, AIC, BIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532
6929 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
6928 Nuclear Data Evaluation for 217Po

Authors: Sherif S. Nafee, Amir K. Al-Ramady, Salem S. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide is presented in the present work. These data include recommended values for the half-life T1/2, α-, β-- and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons and the K-shell to L-shell and L-shell to M-shell and to N-shell conversion electrons ratios K/L, L/M and L/N have been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: Atomic Mass Evaluation, Nuclear Data Evaluation, Total Electron Conversion Electrons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
6927 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
6926 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented

Keywords: Teledosimetric data, efficiency, reliability, safety, cluster solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
6925 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
6924 Clustering Categorical Data Using Hierarchies (CLUCDUH)

Authors: Gökhan Silahtaroğlu

Abstract:

Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).

Keywords: Clustering, tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
6923 Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology

Authors: J. Ruenin, S. Sukprasong, R. Phatthanakun, N. Chomnawang, P. Kuntanawat

Abstract:

In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.

Keywords: Algal cells, microfluidic device, X-ray LIGA, X-ray lithography, metallic mold, synchrotron light, PDMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
6922 Analysis of Users’ Behavior on Book Loan Log Based On Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, Apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: Behavior, data mining technique, Apriori algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
6921 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: Data integrity, data integrity challenges, hospital information systems, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376