Search results for: Decision Support
2119 AI-Based Approaches for Task Offloading, Resource Allocation and Service Placement of IoT Applications: State of the Art
Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib
Abstract:
In order to support the continued growth, critical latency of IoT applications and various obstacles of traditional data centers, Mobile Edge Computing (MEC) has emerged as a promising solution that extends the cloud data-processing and decision-making to edge devices. By adopting a MEC structure, IoT applications could be executed locally, on an edge server, different fog nodes or distant cloud data centers. However, we are often faced with wanting to optimize conflicting criteria such as minimizing energy consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge devices and trying to keep high performance (reducing response time, increasing throughput and service availability) at the same time. Achieving one goal may affect the other making Task Offloading (TO), Resource Allocation (RA) and Service Placement (SP) complex processes. It is a nontrivial multi-objective optimization problem to study the trade-off between conflicting criteria. The paper provides a survey on different TO, SP and RA recent Multi-Objective Optimization (MOO) approaches used in edge computing environments, particularly Artificial Intelligent (AI) ones, to satisfy various objectives, constraints and dynamic conditions related to IoT applications.
Keywords: Mobile Edge Computing, Multi-Objective Optimization, Artificial Intelligence Approaches, Task Offloading, Resource Allocation, Service Placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5172118 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.
Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632117 A Hybrid Machine Learning System for Stock Market Forecasting
Authors: Rohit Choudhry, Kumkum Garg
Abstract:
In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93202116 Breast Motion and Discomfort of Chinese Women in Three Breast Support Conditions
Authors: X.N. Chen, J.P. Wang, D. Jiang, S.M. Shen, Y.K. Yang
Abstract:
Breast motion and discomfort has been studied in Australia, Britain and the United States, while little information was known about the breast motion conditions of Chinese women. The aim of this paper was to study the breast motion and discomfort of Chinese women in no bra condition, daily bra condition and sports bra condition. Breast motion and discomfort of 8 participants was assessed during walking at 5km h-1 and running at 10km h-1. Statistical methods were used to analyze the difference and relationship between breast displacement, perceived breast motion and breast discomfort. Three indexes were developed to evaluate the functions of bras on reducing objective breast motion, subjective breast motion and breast discomfort. The result showed that breast motion of Chinese women was smaller than previous research, which may be resulted from smaller breast size in Asian women.Keywords: Breast discomfort, breast motion, breast support conditions, Chinese women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24812115 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents
Authors: Chiung-Hui Chen
Abstract:
With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.
Keywords: Internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11902114 Measuring the Cognitive Abilities of Teenage Basketball Players in Singapore
Authors: Stella Y. Ng, John B. Peacock, Kay Chuan Tan
Abstract:
This paper discusses the use of a computerized test to measure the decision-making abilities of teenage basketball players in Singapore. There are five sections in this test – Competitive state anxiety inventory-2 (CSAI-2) questionnaire (measures player’s cognitive anxiety, somatic anxiety and self-confidence), Corsi block-tapping task (measures player’s short-term spatial memory), situation awareness global assessment technique (SAGAT) (measures players’ situation awareness in a basketball game), multiple choice questions on basketball knowledge (measures players’ knowledge of basketball rules and concepts), and lastly, a learning test that requires participants to recall and recognize basketball set plays (measures player’s ability to learn and recognize set plays). A total of 25 basketball players, aged 14 to 16 years old, from three secondary school teams participated in this experiment. The results that these basketball players obtained from this cognitive test were then used to compare with their physical fitness and basketball performance.
Keywords: Basketball, cognitive abilities, computerized test, decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24032113 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar
Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto
Abstract:
Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.
Keywords: Block caving, ground penetrating radar, reflectivity, RQD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6732112 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine
Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang
Abstract:
An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.
Keywords: Image texture analysis, feature extraction, target detection, pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17802111 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17062110 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation
Authors: Mohammad Javadi
Abstract:
Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.
Keywords: Brain segmentation, DTI, hierarchical, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18572109 A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision
Authors: Ahmad Sharieh, R Bremananth
Abstract:
Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.
Keywords: Artificial neural network, back propagation gaming, Leverberg-Marquardt, minimax procedure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19382108 Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome
Authors: Malathi Balakrishnan, Shabeshan Rengasamy, Mohd Salleh Aman
Abstract:
The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.Keywords: Constructivism, learning outcome, tactical understanding, and Teaching Game for Understanding (TGfU)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46062107 Extraction of Symbolic Rules from Artificial Neural Networks
Authors: S. M. Kamruzzaman, Md. Monirul Islam
Abstract:
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172106 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring
Authors: Toshitaka Higashino, Naoki Wakamiya
Abstract:
Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.
Keywords: Brain activity, EEG, information processing model, model human processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6912105 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method
Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu
Abstract:
In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.
Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23952104 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis
Authors: Hromada Martin
Abstract:
Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.
Keywords: Critical infrastructure, Protection, Resilience, Risk Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192103 Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.
Keywords: Association Rules, FP-growth, Multiple minimum supports, Weka Tool
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33202102 Methodology for Bioenergy Potential and Assessment for Energy Deployment in Rural Vhembe District Areas
Authors: Clement M. Matasane, Mohamed T. Kahn
Abstract:
Biomass resources such as animal waste, agricultural and acro-industrial residues, forestry and woodland waste, and industrial and municipal solid wastes provide alternative means to utilize its untapped potential for biomass/biofuel renewable energy systems. In addition, crop residues (i.e., grain, starch, and energy crops) are commonly available in the district and play an essential role in community farming activities. The remote sensing technology (mappings) and geographic information systems tool will be used to determine the biomass potential in the Vhembe District Municipality. The detailed assessment, estimation, and modeling in quantifying their distribution, abundance, and quality yield an effective and efficient use of their potential. This paper aims to examine the potential and prospects of deploying bioenergy systems in small or micro-systems in the district for community use and applications. This deployment of the biofuels/biomass systems will help communities for sustainable energy supply from their traditional energy use into innovative and suitable methods that improve their livelihood. The study demonstrates the potential applications of Geographical Information Systems (GIS) in spatial mapping analysis, evaluation, modeling, and decision support for easy access to renewable energy systems.
Keywords: Agricultural crops, waste materials, biomass potentials, bioenergy potentials, GIS mappings, environmental data, renewable energy deployment, sustainable energy supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3412101 Small Entrepreneurship Supporting Economic Policy in Georgia
Authors: G. Erkomaishvili
Abstract:
This paper discusses small entrepreneurship development strategy in Georgia and the tools and regulations that will encourage development of small entrepreneurship. The current situation in the small entrepreneurship sector, as well as factors affecting growth and decline in the sector and the priorities of state support, are studied and analyzed. The objective of this research is to assess the current situation of the sector to highlight opportunities and reveal the gaps. State support of small entrepreneurship should become a key priority in the country’s economic policy, as development of the sector will ensure social, economic and political stability. Based on the research, a small entrepreneurship development strategy is presented; corresponding conclusions are made and recommendations are developed.
Keywords: Economic policy for small entrepreneurship development, small entrepreneurship, regulations, small entrepreneurship development strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222100 Physical Activity and Cognitive Functioning Relationship in Children
Authors: Comfort Mokgothu
Abstract:
This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.
Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7952099 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38862098 A Case Study on Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.
Keywords: Cash flow optimization, payment plan, procurement management, subcontracting plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102097 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States
Authors: Arkaprabha Bhattacharyya, Makarand Hastak
Abstract:
The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.
Keywords: Economic growth, infrastructure development, infrastructure projects, strategic investment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6782096 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System
Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu
Abstract:
Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.
Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16732095 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking
Authors: W. C. Bracken
Abstract:
Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.Keywords: Concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14172094 Enhancing Performance of Bluetooth Piconets Using Priority Scheduling and Exponential Back-Off Mechanism
Authors: Dharmendra Chourishi “Maitraya”, Sridevi Seshadri
Abstract:
Bluetooth is a personal wireless communication technology and is being applied in many scenarios. It is an emerging standard for short range, low cost, low power wireless access technology. Current existing MAC (Medium Access Control) scheduling schemes only provide best-effort service for all masterslave connections. It is very challenging to provide QoS (Quality of Service) support for different connections due to the feature of Master Driven TDD (Time Division Duplex). However, there is no solution available to support both delay and bandwidth guarantees required by real time applications. This paper addresses the issue of how to enhance QoS support in a Bluetooth piconet. The Bluetooth specification proposes a Round Robin scheduler as possible solution for scheduling the transmissions in a Bluetooth Piconet. We propose an algorithm which will reduce the bandwidth waste and enhance the efficiency of network. We define token counters to estimate traffic of real-time slaves. To increase bandwidth utilization, a back-off mechanism is then presented for best-effort slaves to decrease the frequency of polling idle slaves. Simulation results demonstrate that our scheme achieves better performance over the Round Robin scheduling.Keywords: Piconet, Medium Access Control, Polling algorithm, Scheduling, QoS, Time Division Duplex (TDD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012093 Weka Based Desktop Data Mining as Web Service
Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella
Abstract:
Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.Keywords: desktop application, Weka mining, web service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40832092 Dental Students’ Attitude towards Problem-Based Learning before and after Implementing 3D Electronic Dental Models
Authors: Hai Ming Wong, Kuen Wai Ma, Lavender Yu Xin Yang, Yanqi Yang
Abstract:
Objectives: In recent years, the Faculty of Dentistry of the University of Hong Kong have extended the implementation of 3D electronic models (e-models) into problem-based learning (PBL) of the Bachelor of Dental Surgery (BDS) curriculum, aiming at mutual enhancement of PBL teaching quality and the students’ skills in using e-models. This study focuses on the effectiveness of e-models serving as a tool to enhance the students’ skills and competences in PBL. Methods: The questionnaire surveys are conducted to measure 50 fourth-year BDS students’ attitude change between beginning and end of blended PBL tutorials. The response rate of this survey is 100%. Results: The results of this study show the students’ agreement on enhancement of their learning experience after e-model implementation and their expectation to have more blended PBL courses in the future. The potential of e-models in cultivating students’ self-learning skills reduces their dependence on others, while improving their communication skills to argue about pros and cons of different treatment options. The students’ independent thinking ability and problem solving skills are promoted by e-model implementation, resulting in better decision making in treatment planning. Conclusion: It is important for future dental education curriculum planning to cope with the students’ needs, and offer support in the form of software, hardware and facilitators’ assistance for better e-model implementation.
Keywords: Problem-Based learning, curriculum, dental education, 3-D electronic models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65742091 Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation
Authors: Chatcai Tangsri, Onjaree Na-Takuatoong
Abstract:
This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from university that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.
Keywords: Knowledge system, Visually impaired students, Higher education, Knowledge management enable technology, Synchronous/Asynchronous knowledge access, Synchronous/Asynchronous knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16502090 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles
Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin
Abstract:
A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589