Search results for: extraction of rules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1246

Search results for: extraction of rules

436 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
435 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: Segmentation, road signs, characters, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
434 Preliminary Knowledge Extraction from Beethoven’s Sonatas: from Musical Referential Patterns to Emotional Normative Ratings

Authors: Christina Volioti, Sotiris Manitsaris, Eleni Katsouli, Vasiliki Tsekouropoulou, Leontios J. Hadjileontiadis

Abstract:

The piano sonatas of Beethoven represent part of the Intangible Cultural Heritage. The aims of this research were to further explore this intangibility by placing emphasis on defining emotional normative ratings for the “Waldstein” (Op. 53) and “Tempest” (Op. 31) Sonatas of Beethoven. To this end, a musicological analysis was conducted on these particular sonatas and referential patterns in these works of Beethoven were defined. Appropriate interactive questionnaires were designed in order to create a statistical normative rating that describes the emotional status when an individual listens to these musical excerpts. Based on these ratings, it is possible for emotional annotations for these same referential patterns to be created and integrated into the music score.

Keywords: Emotional annotations, intangible cultural heritage, musicological analysis, normative ratings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
433 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
432 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai

Abstract:

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
431 Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems

Authors: Kawtar Benghazi Akhlaki, Manuel I. Capel-Tuñón

Abstract:

UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.

Keywords: CSP+T, formal software specification, process algebras, real-time systems, unified modeling language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
430 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: Audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
429 Emotion Recognition Using Neural Network: A Comparative Study

Authors: Nermine Ahmed Hendy, Hania Farag

Abstract:

Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time

Keywords: Classification, emotion recognition, features extraction, feature selection, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698
428 The Modified Eigenface Method using Two Thresholds

Authors: Yan Ma, ShunBao Li

Abstract:

A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.

Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
427 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
426 A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

Authors: Hanny H. Tumbelaka, Masafumi Miyatake

Abstract:

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.

Keywords: Active Power Filter, MPPT, PV Energy Conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
425 Design and Implementation of a Neural Network for Real-Time Object Tracking

Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan

Abstract:

Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.

Keywords: Image processing, machine vision, neural networks, real-time object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
424 No-Reference Image Quality Assessment using Blur and Noise

Authors: Min Goo Choi, Jung Hoon Jung, Jae Wook Jeon

Abstract:

Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.

Keywords: No Reference, Image Quality Assessment, blur, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3879
423 An Automated Method to Segment and Classify Masses in Mammograms

Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham

Abstract:

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

Keywords: classification, computer-aided detection, featureextraction, mass detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
422 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
421 Risk Management in Islamic Banks: A Case Study of the Faisal Islamic Bank of Egypt

Authors: Mohamed Saad Ahmed Hussien

Abstract:

This paper discusses the risk management in Islamic banks and aims to determine the difference in the practices and methods of risk management in those banks compared to the conventional banks, and to make a case study of the biggest Islamic bank in Egypt (Faisal Islamic Bank of Egypt) to identify the most important financial risks faced and how to manage those risks. It was found that Islamic banks face two types of risks. The first type is similar to the risks in conventional banks; the second type is the additional risks which facing the Islamic banks only as a result of some Islamic modes of financing. With regard to the risk management, Islamic banks such as conventional banks applied the regulatory rules issued by the Central Banks and the Basel Committee; Islamic banks also applied the instructions and procedures issued by the Islamic Financial Services Board (IFSB). Also, Islamic banks are similar to the conventional banks in the practices and methods which they use to manage the risks. And there are some factors that may affect the risk management in Islamic banks, such as the size of the bank and the efficiency of the administration and the staff of the bank.

Keywords: Conventional banks, Faisal Islamic Bank of Egypt, Islamic banks, risk management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
420 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: Data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
419 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems

Authors: R. Sharma, M. Gopal

Abstract:

Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.

Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
418 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.

Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
417 Waste Lubricating Oil Treatment by Adsorption Process Using Different Adsorbents

Authors: Nabil M. Abdel-Jabbar, Essam A.H. Al Zubaidy, Mehrab Mehrvar

Abstract:

Waste lubricating oil re-refining adsorption process by different adsorbent materials was investigated. Adsorbent materials such as oil adsorbent, egg shale powder, date palm kernel powder, and acid activated date palm kernel powder were used. The adsorption process over fixed amount of adsorbent at ambient conditions was investigated. The adsorption/extraction process was able to deposit the asphaltenic and metallic contaminants from the waste oil to lower values. It was found that the date palm kernel powder with contact time of 4 h was able to give the best conditions for treating the waste oil. The recovered solvent could be also reused. It was also found that the activated bentonite gave the best physical properties followed by the date palm kernel powder.

Keywords: activated bentonite, egg shale powder, datepalm kernel powder, used oil treatment, used oilcharacteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3832
416 An Implementation of EURORADIO Protocol for ERTMS Systems

Authors: Gabriele Cecchetti, Anna Lina Ruscelli, Filippo Cugini, Piero Castoldi

Abstract:

European Rail Traffic Management System (ERTMS) is the European reference for interoperable and safer signaling systems to efficiently manage trains running. If implemented, it allows trains cross seamlessly intra-European national borders. ERTMS has defined a secure communication protocol, EURORADIO, based on open communication networks. Its RadioInfill function can improve the reaction of the signaling system to changes in line conditions, avoiding unnecessary braking: its advantages in terms of power saving and travel time has been analyzed. In this paper a software implementation of the EURORADIO protocol with RadioInfill for ERTMS Level 1 using GSM-R is illustrated as part of the SR-Secure Italian project. In this building-blocks architecture the EURORADIO layers communicates together through modular Application Programm Interfaces. Security coding rules and railway industry requirements specified by EN 50128 standard have been respected. The proposed implementation has successfully passed conformity tests and has been tested on a computer-based simulator.

Keywords: ERTMS, ETCS signalling, EURORADIO protocol, radio infill function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431
415 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: Fractal, micro-architecture analysis, multifractal, SVM, osteoporosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
414 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
413 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
412 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images

Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.

Keywords: Defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
411 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence spectroscopy, ourier-transform infrared spectrometer, and X-ray diffraction. The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry.

Keywords: Extraction, Fly ash, Fusion, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
410 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: Day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4508
409 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data

Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci

Abstract:

The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.

Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
408 Automatic Reusability Appraisal of Software Components using Neuro-fuzzy Approach

Authors: Parvinder S. Sandhu, Hardeep Singh

Abstract:

Automatic reusability appraisal could be helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this paper, we have mentioned two-tier approach by studying the structural attributes as well as usability or relevancy of the component to a particular domain. Latent semantic analysis is used for the feature vector representation of various software domains. It exploits the fact that FeatureVector codes can be seen as documents containing terms -the idenifiers present in the components- and so text modeling methods that capture co-occurrence information in low-dimensional spaces can be used. Further, we devised Neuro- Fuzzy hybrid Inference System, which takes structural metric values as input and calculates the reusability of the software component. Decision tree algorithm is used to decide initial set of fuzzy rules for the Neuro-fuzzy system. The results obtained are convincing enough to propose the system for economical identification and retrieval of reusable software components.

Keywords: Clustering, ID3, LSA, Neuro-fuzzy System, SVD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
407 Employers’ Occupational Health and Safety Training Obligations in Framework Directive and Training Procedure and Rules in Turkey

Authors: Nuray Gökçek Karaca, Berrin Gökçek

Abstract:

Employers occupational safety and health training obligations are regulated in 89/391/EEC Framework Directive and also in 6331 numbered Occupational Health and Safety Law in Turkey. The main objective of this research is to determine and evaluate the employers’ occupational health and safety training obligations in Framework Directive in comparison with the 6331 numbered Occupational Health and Safety Law and to examine training principles in Turkey. For this purpose, employers’ occupational health and safety training obligations examined in Framework Directive and Occupational Health and Safety Law. This study carried out through comparative scanning model and literature model. The research data were collected through European Agency and ministry legislations. As a result, employers’ occupational health and safety training obligations in the 6331 numbered Occupational Health and Safety Law are compatible with the 89/391/EEC numbered Framework Directive and training principles are determined by in different ways like the trained workers, training issues, training period, training time and trainers. In this study, employers’ training obligations are evaluated in detail.

Keywords: Directive, occupational health and safety, training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067