Search results for: echo state networks (ESNs)
3023 Application of Neural Networks in Financial Data Mining
Authors: Defu Zhang, Qingshan Jiang, Xin Li
Abstract:
This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.
Keywords: Data mining, neural network, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35893022 Bayesian Belief Networks for Test Driven Development
Authors: Vijayalakshmy Periaswamy S., Kevin McDaid
Abstract:
Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18863021 A New Face Recognition Method using PCA, LDA and Neural Network
Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani
Abstract:
In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32123020 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15893019 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors
Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim
Abstract:
Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.
Keywords: Deadline, Dynamic Voltage Frequency Scaling, Power State Transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9573018 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems
Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo
Abstract:
The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16813017 Synthesis of Wavelet Filters using Wavelet Neural Networks
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16633016 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11843015 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay
Authors: Liqiong Liu, Shouming Zhong
Abstract:
In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.
Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19013014 Video-Based Face Recognition Based On State-Space Model
Authors: Cheng-Chieh Chiang, Yi-Chia Chan, Greg C. Lee
Abstract:
This paper proposes a video-based framework for face recognition to identify which faces appear in a video sequence. Our basic idea is like a tracking task - to track a selection of person candidates over time according to the observing visual features of face images in video frames. Hence, we employ the state-space model to formulate video-based face recognition by dividing this problem into two parts: the likelihood and the transition measures. The likelihood measure is to recognize whose face is currently being observed in video frames, for which two-dimensional linear discriminant analysis is employed. The transition measure estimates the probability of changing from an incorrect recognition at the previous stage to the correct person at the current stage. Moreover, extra nodes associated with head nodes are incorporated into our proposed state-space model. The experimental results are also provided to demonstrate the robustness and efficiency of our proposed approach.
Keywords: 2DLDA, face recognition, state-space model, likelihood measure, transition measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16843013 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18653012 Integrating E-learning Environments with Computational Intelligence Assessment Agents
Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19313011 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks
Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha
Abstract:
Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.
Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26993010 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18073009 Using Axiomatic Design for Developing a Framework of Manufacturing Cloud Service Composition in the Equilibrium State
Authors: Ehsan Vaziri Goodarzi, Mahmood Houshmand, Omid Fatahi Valilai, Vahidreza Ghezavati, Shahrooz Bamdad
Abstract:
One important paradigm of industry 4.0 is Cloud Manufacturing (CM). In CM everything is considered as a service, therefore, the CM platform should consider all service provider's capabilities and tries to integrate services in an equilibrium state. This research develops a framework for implementing manufacturing cloud service composition in the equilibrium state. The developed framework using well-known tools called axiomatic design (AD) and game theory. The research has investigated the factors for forming equilibrium for measures of the manufacturing cloud service composition. Functional requirements (FRs) represent the measures of manufacturing cloud service composition in the equilibrium state. These FRs satisfied by related Design Parameters (DPs). The FRs and DPs are defined by considering the game theory, QoS, consumer needs, parallel and cooperative services. Ultimately, four FRs and DPs represent the framework. To insure the validity of the framework, the authors have used the first AD’s independent axiom.Keywords: Axiomatic design, manufacturing cloud service composition, cloud manufacturing, Industry 4.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7053008 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks
Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan
Abstract:
Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20253007 Virtualization Technology as a Tool for Teaching Computer Networks
Authors: Dalibor Dobrilovic, Borislav Odadžic
Abstract:
In this paper is being described a possible use of virtualization technology in teaching computer networks. The virtualization can be used as a suitable tool for creating virtual network laboratories, supplementing the real laboratories and network simulation software in teaching networking concepts. It will be given a short description of characteristic projects in the area of virtualization technology usage in network simulation, network experiments and engineering education. A method for implementing laboratory has also been explained, together with possible laboratory usage and design of laboratory exercises. At the end, the laboratory test results of virtual laboratory are presented as well.Keywords: Computer network simulation software, teaching networking concepts, virtual network laboratory, virtualization technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22863006 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons
Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia
Abstract:
Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.
Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15573005 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems
Authors: I. A. Farhat
Abstract:
The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.
Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32793004 Energy Efficient Transmission of Image over DWT-OFDM System
Authors: Lakshmi Pujitha Dachuri, Nalini Uppala
Abstract:
In many applications retransmissions of lost packets are not permitted. OFDM is a multi-carrier modulation scheme having excellent performance which allows overlapping in frequency domain. With OFDM there is a simple way of dealing with multipath relatively simple DSP algorithms.
In this paper, an image frame is compressed using DWT, and the compressed data is arranged in data vectors, each with equal number of coefficients. These vectors are quantized and binary coded to get the bit steams, which are then packetized and intelligently mapped to the OFDM system. Based on one-bit channel state information at the transmitter, the descriptions in order of descending priority are assigned to the currently good channels such that poorer sub-channels can only affect the lesser important data vectors. We consider only one-bit channel state information available at the transmitter, informing only about the sub-channels to be good or bad. For a good sub-channel, instantaneous received power should be greater than a threshold Pth. Otherwise, the sub-channel is in fading state and considered bad for that batch of coefficients. In order to reduce the system power consumption, the mapped descriptions onto the bad sub channels are dropped at the transmitter. The binary channel state information gives an opportunity to map the bit streams intelligently and to save a reasonable amount of power. By using MAT LAB simulation we can analysis the performance of our proposed scheme, in terms of system energy saving without compromising the received quality in terms of peak signal-noise ratio.
Keywords: Binary channel state, Channel state feedback, DWT-OFDM system, Energy saving, Fading broadcast channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28093003 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16663002 Mobile Ad Hoc Networks and It’s Routing Protocols
Authors: Rakesh Kumar, Piush Verma, Yaduvir Singh
Abstract:
A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.
Keywords: AHP, AODV, Cryptography, EA, MANET, Optimized output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40183001 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language
Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri
Abstract:
Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.
Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17213000 The Principle of the Protection of Legitimate Expectation: Analysis the Adjudications of Thailand Court
Authors: Paiboon Chuwatthanakij
Abstract:
In reference to the legal state in the Thai legal system, most people understand the minor principles of the legal state form, which are the principles that can be explained and understood easily and the results can be seen clearly, especially in the legitimacy of administrative acts. Therefore, there is no awareness of justice, which is the fundamental value of Thai law. The legitimacy of administrative acts requires the administration to adhere to the constitution and legislative laws in enforcement of the laws. If it appears that the administrative acts are illegitimate, the administrative court, as the court of justice, will revoke those acts as if they had never been set in the legal system, this will affect people’s trust as they are unaware as to whether the administrative acts that appoint their lives are legitimate or not. Regarding the revocation of administrative orders by the administrative court as if those orders had never existed, the common individual surely cannot be expected to comprehend the security of their juristic position. Therefore, the legal state does not require a revocation of the government’s acts to terminate its legal results merely because those acts are illegitimate, but there should be considerations and realizations regarding the “The Principle of the Protection of Legitimate Expectation,” which is a minor principle in the legal state’s content that focuses on supporting and protecting legitimate expectations of the juristic position of an individual and maintaining justice, which is the fundamental value of Thai law.
Keywords: Legal state, Rule of law, Protection of legitimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23762999 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8252998 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Authors: D. Naga Ravi Kiran, C. G. Dethe
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262997 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques
Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici
Abstract:
Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17262996 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.
Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41052995 Welfare States vs. States of Resources: A Question of Governance
Authors: Nikoloudi Anastasia, Tsalampouni Aikaterini
Abstract:
The present paper aims to present the significant role that the concept of governance can play in order to combine naturals resources as useful funding basis for the formation of a stable and effective welfare state model. The combination of those two different fields aims to represent the modern trends of our era as the means to solve the severe financial and economic issues caused mostly due to the malfunction of the welfare state and its public sector. European Union and Asian countries (especially China) are the main areas of interest since EU experiences a fiscal and economic crisis while China rules the area of the natural resources exploiting 97% of rare earths elements worldwide.
Keywords: Governance, natural resources, rare earths elements, welfare state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20602994 Simulation using the Recursive Method in USN
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.Keywords: Data filtering, recursive CNP, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502