Search results for: dynamic load allowance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3177

Search results for: dynamic load allowance

2367 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fares

Abstract:

In the present work, the structural responses of 12 ultra-high-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: Ultra-high-performance concrete, moment capacity, RC beams, hybrid fiber, ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113
2366 OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

Authors: A. B.Bhattacharyya, B. S.K.Goswami

Abstract:

This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS (Flexible AC Transmission System) devices for the improvement of Power transfer capacity in an interconnected Power System. The GA based approach is applied on IEEE 30 BUS System. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is noticed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. Genetic Algorithm is then applied to find the amount of magnitudes of the FACTS devices. This approach of GA based placement of FACTS devices is tremendous beneficial both in terms of performance and economy is clearly observed from the result obtained.

Keywords: FACTS Devices, Line Power Flow, OptimalLocation of FACTS Devices, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4125
2365 Creation of a New Software used for Palletizing Process

Authors: Dušan Kravec, Ondrej Staš, Marián Tolnay, Michal Bachratý

Abstract:

This article gives a short preview of the new software created especially for palletizing process in automated production systems. Each chapter of this article is about problem solving in development of modules in Java programming language. First part describes structure of the software, its modules and data flow between them. Second part describes all deployment methods, which are implemented in the software. Next chapter is about twodimensional editor created for manipulation with objects in each layer of the load and gives calculations for collision control. Module of virtual reality used for three-dimensional preview and creation of the load is described in the fifth chapter. The last part of this article describes communication and data flow between control system of the robot, vision system and software.

Keywords: Palletizing, deployment methods, palletizing software, virtual reality in palletizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
2364 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model

Authors: L. K. Singh, Riktesh Srivastava

Abstract:

How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.

Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
2363 Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method

Authors: Afshin Ahmadi Nadooshan

Abstract:

In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.

Keywords: Interfacial flow, Incompressible flow, surface tension, Volume-Of-Fluid, Kelvin-Helmholtz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
2362 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
2361 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm

Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula

Abstract:

This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.

Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
2360 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972
2359 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
2358 Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

Authors: N. Khazaei, M. Jouki, A. Kalbasi, H. Tavakolipour, S. Rajabifar, F. Motamedi. Sedeh, A. Jouki

Abstract:

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Keywords: saffron; contaminations; preparation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
2357 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: Aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
2356 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
2355 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings

Authors: Ranojoy Dutta, Adam Barker

Abstract:

Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.

Keywords: Electrochromic, operable windows, thermal comfort, natural ventilation, adaptive comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560
2354 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: Friction coefficients, mass loss, wear rate, bronze, polyester, graphite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
2353 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel

Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi

Abstract:

A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.

Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
2352 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
2351 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: Debonding, dynamic response, finite element modelling, FRP beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
2350 Intact and ACL-Deficient Knee MODEL Evaluation

Authors: A. Vairis, M. Petousis, B. Kandyla, C. Chrisoulakis

Abstract:

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Keywords: biomechanics, finite element modeling, knee joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
2349 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
2348 Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario

Authors: Ali Y Al-Attraqchi, P. Rajeev, M. Javad Hashemi, Riadh Al-Mahaidi

Abstract:

This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.

Keywords: Incremental dynamic analysis, progressive collapse, structural engineering, pushdown analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
2347 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture

Authors: Merkisz Jerzy, Lijewski Piotr, Fuć Paweł, Siedlecki Maciej, Ziółkowski Andrzej, Weymann Sylwester

Abstract:

The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for carriage of this type of cargo in terms of exhaust emissions and fuel consumption.

Keywords: Emission, transport, fuel consumption, PEMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2346 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

Authors: Manisha Dubey, Aalok Dubey

Abstract:

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.

Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
2345 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
2344 Anaerobic Treatment of Petroleum Refinery Wastewater

Authors: H. A. Gasim, S. R. M. Kutty, M. Hasnain Isa

Abstract:

Anaerobic treatment has many advantages over other biological method particularly when used to treat complex wastewater such as petroleum refinery wastewater. In this study two Up-flow Anaerobic Sludge Blanket (UASB) reactors were operated in parallel to treat six volumetric organic loads (0.58, 1.21, 0.89, 2.34, 1.47 and 4.14 kg COD/m3·d) to evaluate the chemical oxygen demand (COD) removal efficiency. The reactors were continuously adapting to the changing of operation condition with increase in the removal efficiency or slight decrease until the last load which was more than two times the load, at which the reactor stressed and the removal efficiency decreased to 75% with effluent concentration of 1746 mg COD/L. Other parameters were also monitored such as pH, alkalinity, volatile fatty acid and gas production rate. The UASB reactor was suitable to treat petroleum refinery wastewater and the highest COD removal rate was 83% at 1215 kg/m3·d with COD concentration about 356 mg/L in the effluent.

Keywords: Petroleum refinery wastewater, anaerobic digestion, UASB, organic volumetric loading rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928
2343 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
2342 Self-protection Method for Flying Robots to Avoid Collision

Authors: Guosheng Wu, Luning Wang, Changyuan Fan, Xi Zhu

Abstract:

This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other auxiliary positioning systems. The Self-protection System gives robots self-protection abilities to work in uncertain 3D dynamic environments. Simulations illustrate the validity of the proposed method.

Keywords: Collision avoidance, Mobile robots, Motion-planning, Sphere coordinates, Self-protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
2341 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine

Authors: K. Arunachalam, P. Mannar Jawahar

Abstract:

Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.

Keywords: Cooling system, Electric water pump, Mechanical water pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5607
2340 EBSD Investigation of Friction Stir Welded Duplex Stainless Steel

Authors: T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi, H. Assadi

Abstract:

Electron back-scattered diffraction was used to follow the evolution of microstructure from the base metal to the stir zone (SZ) in a duplex stainless steel subjected to friction stir welding. In the stir zone (SZ), a continuous dynamic recrystallization (CDRX) was evidenced for ferrite, while it was suggested that a static recrystallization together with CDRX may occur for austenite. It was found that ferrite and austenite grains in the SZ take a typical shear texture of bcc and fcc materials respectively.

Keywords: Friction stir welding, Dynamic recrystallization, Electron backscattering diffraction (EBSD), Duplex stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
2339 X-Bracing Configuration and Seismic Response

Authors: Saeed Rahjoo, Babak H. Mamaqani

Abstract:

Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary.

Keywords: Bracing configuration, concentrically braced frame (CBF), Push over analyses, Response reduction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
2338 Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: Research and development, technology and Innovation, lithium-ion-battery production, load carrier development process, cost valuation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267