Search results for: Feed-forward Large Neural Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5042

Search results for: Feed-forward Large Neural Network

4232 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo

Abstract:

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
4231 Role-based Access Control Model in Home Network Environments

Authors: Do-Woo Kim, Geon Woo Kim, Jun-Ho Lee, Jong-Wook Han

Abstract:

The home in these days has not one computer connected to the Internet but rather a network of many devices within the home, and that network might be connected to the Internet. In such an environment, the potential for attacks is greatly increased. The general security technology can not apply because of the use of various wired and wireless network, middleware and protocol in digital home environment and a restricted system resource of home information appliances. To offer secure home services home network environments have need of access control for various home devices and information when users want to access. Therefore home network access control for user authorization is a very important issue. In this paper we propose access control model using RBAC in home network environments to provide home users with secure home services.

Keywords: Home network, access control, RBAC, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
4230 Power Forecasting of Photovoltaic Generation

Authors: S. H. Oudjana, A. Hellal, I. Hadj Mahammed

Abstract:

Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic power generation forecasting error.

Keywords: Photovoltaic Power Forecasting, Regression, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766
4229 Network Mobility Support in Content-Centric Internet

Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee

Abstract:

In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.

Keywords: CCN, handover, NEMO, mobility management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
4228 Performance Evaluation of TCP Vegas versus Different TCP Variants in Homogeneous and Heterogeneous Wired Networks

Authors: B. S. Yew, B. L. Ong, R. B. Ahmad

Abstract:

A study on the performance of TCP Vegas versus different TCP variants in homogeneous and heterogeneous wired networks are performed via simulation experiment using network simulator (ns-2). This performance evaluation prepared a comparison medium for the performance evaluation of enhanced-TCP Vegas in wired network and for wireless network. In homogeneous network, the performance of TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas and TCP SACK are analyzed. In heterogeneous network, the performances of TCP Vegas against TCP variants are analyzed. TCP Vegas outperforms other TCP variants in homogeneous wired network. However, TCP Vegas achieves unfair throughput in heterogeneous wired network.

Keywords: TCP Vegas, Homogeneous, Heterogeneous, WiredNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
4227 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: Bacterial foraging optimization, hydrogels, neural networks, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
4226 Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays

Authors: Qingqing Wang, Shouming Zhong

Abstract:

This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.

Keywords: Neural networks, Globally asymptotic stability , LMI approach, Distributed delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
4225 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
4224 Balancing Neural Trees to Improve Classification Performance

Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti

Abstract:

In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.

Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
4223 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
4222 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: Quality of experience, quality of service, packet loss probability, network capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
4221 Study of Single Network Adjustment Using QOCA Software in Korea

Authors: Seongchan Kang, Hongsik Yun, Hyukgil Kim, Minwoo Park

Abstract:

For this study, this researcher conducted a precision network adjustment with QOCA, the precision network adjustment software developed by Jet Propulsion Laboratory, to perform an integrated network adjustment on the Unified Control Points managed by the National Geographic Information Institute. Towards this end, 275 Unified Control Points observed in 2008 were selected before a network adjustment is performed on those 275 Unified Control Points. The RMSE on the discrepancies of coordinates as compared to the results of GLOBK was ±6.07mm along the N axis, ±2.68mm along the E axis and ±6.49mm along the U axis.

Keywords: Network adjustment, QOCA, unified control point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
4220 Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots

Authors: A. P. Anvar, T. Dowling, T. Putland, A. M. Anvar, S.Grainger

Abstract:

This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.

Keywords: Intelligent Techniques, Condition Monitoring Systems, ICMS, Robots, Fault, Unmanned Aerial Vehicle, UAV, Neural Networks, Diagnosis, Fuzzy Logic, Prognosis, Remedy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
4219 Towards an AS Level Network Performance Model

Authors: Huan Xiong, Ming Chen

Abstract:

In order to research Internet quantificationally and better model the performance of network, this paper proposes a novel AS level network performance model (MNPM), it takes autonomous system (AS) as basic modeling unit, measures E2E performance between any two outdegrees of an AS and organizes measurement results into matrix form which called performance matrix (PM). Inter-AS performance calculation is defined according to performance information stored in PM. Simulation has been implemented to verify the correctness of MNPM and a practical application of MNPM (network congestion detection) is given.

Keywords: AS, network performance, model, metric, congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
4218 New PTH Moment Stable Criteria of Stochastic Neural Networks

Authors: Zixin Liu, Huawei Yang, Fangwei Chen

Abstract:

In this paper, the issue of pth moment stability of a class of stochastic neural networks with mixed delays is investigated. By establishing two integro-differential inequalities, some new sufficient conditions ensuring pth moment exponential stability are obtained. Compared with some previous publications, our results generalize some earlier works reported in the literature, and remove some strict constraints of time delays and kernel functions. Two numerical examples are presented to illustrate the validity of the main results.

Keywords: Neural networks, stochastic, PTH moment stable, time varying delays, distributed delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
4217 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
4216 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
4215 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
4214 Transmission Expansion Planning Considering Network Adequacy and Investment Cost Limitation using Genetic Algorithm

Authors: M. Mahdavi, E. Mahdavi

Abstract:

In this research, STNEP is being studied considering network adequacy and limitation of investment cost by decimal codification genetic algorithm (DCGA). The goal is obtaining the maximum of network adequacy with lowest expansion cost for a specific investment. Finally, the proposed idea is applied to the Garvers 6-bus network. The results show that considering the network adequacy for solution of STNEP problem is caused that among of expansion plans for a determined investment, configuration which has relatively lower expansion cost and higher adequacy is proposed by GA based method. Finally, with respect to the curve of adequacy versus expansion cost it can be said that more optimal configurations for expansion of network are obtained with lower investment costs.

Keywords: TNEP, Network Adequacy, Investment Cost, GA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
4213 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks

Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati

Abstract:

In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.

Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
4212 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
4211 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
4210 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
4209 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning

Authors: Sepideh Fazeli, Fariba Bahrami

Abstract:

Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.

Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
4208 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen

Abstract:

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
4207 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering

Authors: Lu-Chen Yeh‚ Jui-Ming Yeh

Abstract:

In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers was characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multipotentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.

Keywords: Electrospun, polyaniline, neural stem cell, differentiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
4206 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Authors: Sameh H. Ghwanmeh

Abstract:

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Keywords: Education, networking, performance, e-content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
4205 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
4204 pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.

Keywords: pth Moment Exponential synchronization, Stochastic, Neural networks, Mixed time delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
4203 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698