Search results for: Aquatic training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1054

Search results for: Aquatic training

274 Neural Network Tuned Fuzzy Controller for MIMO System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.

Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
273 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

Authors: Panikos Heracleous

Abstract:

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
272 Developing a Sustainable Educational Portal for the D-Grid Community

Authors: Viktor Achter, Sebastian Breuers, Marc Seifert, Ulrich Lang, Joachim Götze, Bernd Reuther, Paul Müller

Abstract:

Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.

Keywords: D-Grid, e-learning, e-science, Grid computing, SuGI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
271 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: Knowledge management, organizational commitment, loyalty, drilling industry, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
270 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria

Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje

Abstract:

This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.

Keywords: Academic libraries, computers in the library, digital libraries, public computers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
269 The e-DELPHI Method to Test the Importance Competence and Skills: Case of the Lifelong Learning Spanish Trainers

Authors: Xhevrie Mamaqi, Jesus Miguel, Pilar Olave

Abstract:

The lifelong learning is a crucial element in the modernization of European education and training systems. The most important actors in the development process of the lifelong learning are the trainers, whose professional characteristics need new competences and skills in the current labour market. The main objective of this paper is to establish an importance ranking of the new competences, capabilities and skills that the lifelong learning Spanish trainers must possess nowadays. A wide study of secondary sources has allowed the design of a questionnaire that organizes the trainer-s skills and competences. The e-Delphi method is used for realizing a creative, individual and anonymous evaluation by experts on the importance ranking that presents the criteria, sub-criteria and indicators of the e-Delphi questionnaire. Twenty Spanish experts in the lifelong learning have participated in two rounds of the e- DELPHI method. In the first round, the analysis of the experts- evaluation has allowed to establish the ranking of the most importance criteria, sub-criteria and indicators and to eliminate the least valued. The minimum level necessary to reach the consensus among experts has been achieved in the second round.

Keywords: competences and skills, lifelong learningtrainers, Spain, e-DELHI method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
268 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
267 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
266 A Kernel Based Rejection Method for Supervised Classification

Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy

Abstract:

In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.

Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
265 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function

Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi

Abstract:

Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.

Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809
264 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System

Authors: Reza Ariaeinejad, Norm Archer

Abstract:

Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.

Keywords: M-health, e-health, self-management, disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
263 Thai Perception on Litecoin Value

Authors: Toby Gibbs, Suwaree Yordchim

Abstract:

This research analyzes factors affecting the success of Litecoin Value within Thailand and develops a guideline for selfreliance for effective business implementation. Samples in this study included 119 people through surveys. The results revealed four main factors affecting the success as follows: 1) Future Career training should be pursued in applied Litecoin development. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Litecoin within the community. 4) A great majority didn't know what Litecoin was. The guideline for self-reliance planning consisted of 4 aspects: 1) Development planning: by arranging meet up groups to conduct further education on Litecoin and share solutions on adoption into every day usage. Local communities need to develop awareness of the usefulness of Litecoin and share the value of Litecoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Litecoin within their departments. 3) Further research should be pursued on how Litecoin Value can improve business and tourism within Thailand. 4) Local communities should focus on developing Litecoin awareness by encouraging street vendors to accept Litecoin as another form of payment for services rendered.

Keywords: Litecoin, Mining, Confirmations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
262 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
261 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
260 Learning through Shared Procedures -A Case of Using Technology to Bridge the Gap between Theory and Practice in Officer Education

Authors: O. Boe, S-T. Kristiansen, R. Wold

Abstract:

In this article we explore how computer assisted exercises may allow for bridging the traditional gap between theory and practice in professional education. To educate officers able to master the complexity of the battlefield the Norwegian Military Academy needs to develop a learning environment that allows for creating viable connections between the educational environment and the field of practice. In response to this challenge we explore the conditions necessary to make computer assisted training systems (CATS) a useful tool to create structural similarities between an educational context and the field of military practice. Although, CATS may facilitate work procedures close to real life situations, this case do demonstrate how professional competence also must build on viable learning theories and environments. This paper explores the conditions that allow for using simulators to facilitate professional competence from within an educational setting. We develop a generic didactic model that ascribes learning to participation in iterative cycles of action and reflection. The development of this model is motivated by the need to develop an interdisciplinary professional education rooted in the pattern of military practice.

Keywords: Development in higher education, experiential learning, professional education, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
259 Thai Perception on Bitcoin Value

Authors: Toby Gibbs, Suwaree Yordchim

Abstract:

This research analyzes factors affecting the success of Bitcoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 121 people through surveys. The results revealed four main factors affecting the success as follows: 1) A great majority didn't know what Bitcoin was. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Bitcoin within the community. 4) Future Career training should be pursued in applied Bitcoin development.

The guideline for self-reliance planning consisted of 4 aspects: 1) Local communities need to develop awareness of the usefulness of Bitcoin and share the value of Bitcoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Bitcoin within their departments. 3) Further research should be pursued on how Bitcoin Value can improve business and tourism within Thailand. Local communities should focus on developing Bitcoin awareness by encouraging street vendors to accept Bitcoin as another form of payment for services rendered. 4) Development planning: by arranging meet up groups to conduct further education on Bitcoin and share solutions on adoption into every day usage.

Keywords: Bitcoin, Cryptocurrency, Decentralized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
258 An Agri-food Supply Chain Model for Cultivating the Capabilities of Farmers Accessing Market Using Corporate Social Responsibility Program

Authors: W. Sutopo, M. Hisjam, Yuniaristanto

Abstract:

In general, small-scale vegetables farmers experience problems in improving the safety and quality of vegetables supplied to high-class consumers in modern retailers. They also lack of information to access market. The farmers group and/or cooperative (FGC) should be able to assist its members by providing training in handling and packing vegetables and enhancing marketing capabilities to sell commodities to the modern retailers. This study proposes an agri-food supply chain (ASC) model that involves the corporate social responsibility (CSR) activities to cultivate the capabilities of farmers to access market. Multi period ASC model is formulated as Weighted Goal Programming (WGP) to analyze the impacts of CSR programs to empower the FGCs in managing the small-scale vegetables farmers. The results show that the proposed model can be used to determine the priority of programs in order to maximize the four goals to be achieved in the CSR programs.

Keywords: agri-food supply chain, corporate social responsibility, small-scale vegetables farmers, weighted goal programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
257 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Authors: B. Dora Arul Selvi, .N. Kamaraj

Abstract:

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
256 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
255 Development and Usability Assessment of a Connected Resistance Exercise Band Application for Strength-Monitoring

Authors: J. A. Batsis, G. G. Boateng, L. M. Seo, C. L. Petersen, K. L. Fortuna, E. V. Wechsler, R. J. Peterson, S. B. Cook, D. Pidgeon, R. S. Dokko, R. J. Halter, D. F. Kotz

Abstract:

Resistance exercise bands are a core component of any physical activity strengthening program. Strength training can mitigate the development of sarcopenia, the loss of muscle mass or strength and function with aging. Yet, the adherence of such behavioral exercise strategies in a home-based setting are fraught with issues of monitoring and compliance. Our group developed a Bluetooth-enabled resistance exercise band capable of transmitting data to an open-source platform. In this work, we developed an application to capture this information in real-time, and conducted three usability studies in two mixed-aged groups of participants (n=6 each) and a group of older adults with obesity participating in a weight-loss intervention (n=20). The system was favorable, acceptable and provided iterative information that could assist in future deployment on ubiquitous platforms. Our formative work provides the foundation to deliver home-based monitoring interventions in a high-risk, older adult population.

Keywords: Application, mHealth, older adult, resistance exercise band, sarcopenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
254 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
253 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118
252 A Study on the Leadership Behavior, Safety Culture, and Safety Performance of the Healthcare Industry

Authors: Cheng-Chia Yang , Yi-Shun Wang , Sue-Ting Chang, Suh-Er Guo, Mei-Fen Huang

Abstract:

Object: Review recent publications of patient safety culture to investigate the relationship between leadership behavior, safety culture, and safety performance in the healthcare industry. Method: This study is a cross-sectional study, 350 questionnaires were mailed to hospital workers with 195 valid responses obtained, and a 55.7% valid response rate. Confirmatory factor analysis (CFA) was carried out to test the factor structure and determine if the composite reliability was significant with a factor loading of >0.5, resulting in an acceptable model fit. Results: Through the analysis of One-way ANOVA, the results showed that physicians significantly have more negative patient safety culture perceptions and safety performance perceptions than non- physicians. Conclusions: The path analysis results show that leadership behavior affects safety culture and safety performance in the health care industry. Safety performance was affected and improved with contingency leadership and a positive patient safety organization culture. The study suggests improving safety performance by providing a well-managed system that includes: consideration of leadership, hospital worker training courses, and a solid safety reporting system.

Keywords: Leadership Behavior, Patient Safety, Safety Culture, Safety Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3994
251 Repair and Maintenance Capability and Facilities Availability for MF 285 Tractor Operators in North of Khouzestan Province

Authors: Fatemeh Afsharnia, Mohammad Amin Asoodar, Abbas Abdeshahi, Afshin Marzban

Abstract:

A repairable mechanical system (as agricultural tractor) is subject to deterioration or repeated failure and needs a repair shops and also operator’s capability for the repair and maintenance operations. Data are based on field visits and interviews with 48MF 285 tractor operators from 14 villages collected in north of Khouzestan province. The results showed that most operators were lack the technical skill to service and repair tractors due to insufficient training, specific education and work experience. Inadequate repair and maintenance facilities, such as workshops, mechanics and spare parts depots cause delays in repair work in the survey areas. Farmers do not keep accurate service records and most of them disregard proper maintenance and service of their tractors, such as changing engine oil without following the manufacturer’s recommendations. Since, Repair and maintenance facilities should be established in village areas to guarantee timely repair in case of breakdowns and to make spare parts available at low price. The operators should keep service records accurately and adhere to maintenance and service schedules according to the manufacturer’s instructions. They should also be encouraged to do the service and maintain their tractors properly.

Keywords: Operators’ capability, Facilities availability, Repair and maintenance, MF 285 tractors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
250 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
249 Role of Technological Innovation in Improving Manufacturing Performance: A Review

Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda

Abstract:

MSMEs are regarded as the sunrise sector of the Indian economy in view of its large potential for growth and likely socio economic impact specifically on employment and income generation. In today’s competitive business environment, global competition forces companies to continuously seek ways of improving their products and services. The pressure on organizations to adapt to new technologies and external threats requires resourcefulness, creativity and innovation. Market has become more open, competitive and customers more demanding. Without continuous technology innovation, no organization can ever remain competitive. Innovations reflect a critical way in which organizations respond to either technological or market challenges. The need of the market is to deliver high quality products through continuous changing in features in product, improve existing products, reduce their cost, and improve employee skills, training, technology infrastructure and financial policies. Therefore, the key factor of organization’s ability to change is innovation. The study presents a detailed review of literature on the role of technology innovation in improving manufacturing performance of industries.

Keywords: Competitive, Manufacturing performance, MSMEs, Technological Innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
248 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
247 Knowledge Transfer in Industrial Clusters

Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha

Abstract:

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Keywords: Industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
246 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
245 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221