Search results for: Cooperative/Collaborative Learning and Environments.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2831

Search results for: Cooperative/Collaborative Learning and Environments.

2081 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Jackson A. Santos, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this paper. Behavior and learning of students of science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: Cell phone, digital micrographs, learning of sciences, teaching practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2080 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach

Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li

Abstract:

Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.

Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
2079 Rethinking the Languages for Specific Purposes Syllabus in the 21st Century: Topic-Centered or Skills-Centered

Authors: A. Knezović

Abstract:

21st century has transformed the labor market landscape in a way of posing new and different demands on university graduates as well as university lecturers, which means that the knowledge and academic skills students acquire in the course of their studies should be applicable and transferable from the higher education context to their future professional careers. Given the context of the Languages for Specific Purposes (LSP) classroom, the teachers’ objective is not only to teach the language itself, but also to prepare students to use that language as a medium to develop generic skills and competences. These include media and information literacy, critical and creative thinking, problem-solving and analytical skills, effective written and oral communication, as well as collaborative work and social skills, all of which are necessary to make university graduates more competitive in everyday professional environments. On the other hand, due to limitations of time and large numbers of students in classes, the frequently topic-centered syllabus of LSP courses places considerable focus on acquiring the subject matter and specialist vocabulary instead of sufficient development of skills and competences required by students’ prospective employers. This paper intends to explore some of those issues as viewed both by LSP lecturers and by business professionals in their respective surveys. The surveys were conducted among more than 50 LSP lecturers at higher education institutions in Croatia, more than 40 HR professionals and more than 60 university graduates with degrees in economics and/or business working in management positions in mainly large and medium-sized companies in Croatia. Various elements of LSP course content have been taken into consideration in this research, including reading and listening comprehension of specialist texts, acquisition of specialist vocabulary and grammatical structures, as well as presentation and negotiation skills. The ability to hold meetings, conduct business correspondence, write reports, academic texts, case studies and take part in debates were also taken into consideration, as well as informal business communication, business etiquette and core courses delivered in a foreign language. The results of the surveys conducted among LSP lecturers will be analyzed with reference to what extent those elements are included in their courses and how consistently and thoroughly they are evaluated according to their course requirements. Their opinions will be compared to the results of the surveys conducted among professionals from a range of industries in Croatia so as to examine how useful and important they perceive the same elements of the LSP course content in their working environments. Such comparative analysis will thus show to what extent the syllabi of LSP courses meet the demands of the employment market when it comes to the students’ language skills and competences, as well as transferable skills. Finally, the findings will also be compared to the observations based on practical teaching experience and the relevant sources that have been used in this research. In conclusion, the ideas and observations in this paper are merely open-ended questions that do not have conclusive answers, but might prompt LSP lecturers to re-evaluate the content and objectives of their course syllabi.

Keywords: Languages for specific purposes (LSP), language skills, topic-centered syllabus, transferable skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
2078 Online Learning Activities Kit on Plants in Thai Literature in Compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn

Authors: Pornpapatsorn Princhankol, Kannika Udnunkarn

Abstract:

This research was aimed to develop and determine the quality of online learning activities kit as well as to examine the learning achievement of students and their satisfaction towards the kit through authentic assessment. The tools in this research contained online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, the assessment form, the learning achievement test, the satisfaction form and the authentic assessment form. The population consisted of 40 students in the second range of primary years (Prathomsuksa 4 to 6) at Ban Khao Rak School, Suratthani Province, Thailand. The research results showed that the content quality of the developed online learning activities kit as assessed by the experts was 4.70 on average or at very high level. The pre-test and post-test comparison was made to examine the learning achievement and it revealed that the post-test score was higher than the pre-test score with statistical significance at the .01 level. The satisfaction of the sampling group towards the online learning activities kit was 4.74 or at the highest level. The authentic assessment showed an average of 1.69 or at good level. Therefore, the online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn could be used in real classroom situations.

Keywords: Online learning activities kit, Plants in Thai literature, School Botanical garden

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
2077 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: Mobile learning, nursing institute, unified theory of acceptance and use of technology model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2076 Resources-Based Ontology Matching to Access Learning Resources

Authors: A. Elbyed

Abstract:

Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.

Keywords: Resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
2075 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels

Authors: Jingwen Shan

Abstract:

In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.

Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
2074 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe

Abstract:

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Keywords: Decision making, Machine learning, Strategy, Ayo game.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
2073 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method

Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay

Abstract:

This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.

Keywords: Agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
2072 Basic Science Medical Students’ Perception of a Formative Peer Assessment Model for Reinforcing the Learning of Physical Examination Skills During the COVID-19 Pandemic Online Learning Period

Authors: Neilal A. Isaac, Madison Edwards, Kirthana Sugunathevan, Mohan Kumar

Abstract:

The COVID-19 pandemic challenged the education system and forced medical schools to transition to online learning. With this transition, one of the major concerns for students and educators was to ensure that Physical Examination (PE) skills were still being mastered. Thus, the formative peer assessment model was designed to enhance the learning of PE skills during the COVID-19 pandemic in the online learning landscape. Year 1 and year 2 students enrolled in clinical skills courses at the University of Medicine and Health Sciences, St. Kitts were asked to record themselves demonstrating PE skills with a healthy patient volunteer after every skills class. Each student was assigned to exchange feedback with one peer in the course. At the end of the first two semesters of this learning activity, a cross-sectional survey was conducted for the two cohorts of year-1 and year-2 students. The year-1 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.317 [2.759, 3.875]. The year-2 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.597 [2.978, 4.180]. Students indicated that guidance from faculty, flexible deadlines, and detailed and timely feedback from peers were areas for improvement in this process.

Keywords: COVID-19 pandemic, distant learning, online medical education, peer assessment, physical examination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
2071 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: Ultra-wideband, propagation, line-of-sight, non-line-of-sight, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
2070 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2069 Improving the Reusability and Interoperability of E-Learning Material

Authors: D. Del Corso, A. Tartaglia, E. Tresso, M. Cambiolo, L. Forno, G. Morrone

Abstract:

A key requirement for e-learning materials is reusability and interoperability, that is the possibility to use at least part of the contents in different courses, and to deliver them trough different platforms. These features make possible to limit the cost of new packages, but require the development of material according to proper specifications. SCORM (Sharable Content Object Reference Model) is a set of guidelines suitable for this purpose. A specific adaptation project has been started to make possible to reuse existing materials. The paper describes the main characteristics of SCORM specification, and the procedure used to modify the existing material.

Keywords: SCORM, e-learning, standard, educational effectiveness, assessment, methodology, open access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2068 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region

Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang

Abstract:

This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.

Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2067 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Authors: Kalinga Ellen A., Bagile Burchard B.

Abstract:

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2066 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
2065 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
2064 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: Sustainable Urban Waterfront, Green Infrastructure, Energy Efficient, Cairo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
2063 Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)

Authors: Jamalizadeh, M.R., Moghaddamnia, A., Piri, J., Arbabi, V., Homayounifar, M., Shahryari, A.

Abstract:

Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.

Keywords: Dust Storm, Gamma Test, Prediction, ANNs, Zabol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
2062 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
2061 Educational Quiz Board Games for Adaptive E-Learning

Authors: Boyan Bontchev, Dessislava Vassileva

Abstract:

Internet computer games turn to be more and more attractive within the context of technology enhanced learning. Educational games as quizzes and quests have gained significant success in appealing and motivating learners to study in a different way and provoke steadily increasing interest in new methods of application. Board games are specific group of games where figures are manipulated in competitive play mode with race conditions on a surface according predefined rules. The article represents a new, formalized model of traditional quizzes, puzzles and quests shown as multimedia board games which facilitates the construction process of such games. Authors provide different examples of quizzes and their models in order to demonstrate the model is quite general and does support not only quizzes, mazes and quests but also any set of teaching activities. The execution process of such models is explained and, as well, how they can be useful for creation and delivery of adaptive e-learning courseware.

Keywords: Quiz, board game, e-learning, adaptive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
2060 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
2059 The Application of Active Learning to Develop Creativity in General Education

Authors: Chalermwut Wijit

Abstract:

This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.

Keywords: Creative Thinking, Active Learning, General Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
2058 Using Scrum in an Online Smart Classroom Environment: A Case Study

Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr

Abstract:

The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences and styles of the digital generation of students recently. Further, with the onset of coronavirus disease (COVID-19) pandemic, online classroom has become the most suitable alternate mode of teaching environment to cope with lockdown restrictions. These changes have compounded the problems in the learning engagement and short attention span of HE students. New Agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.

Keywords: Agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
2057 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

Authors: Z.Farhadpour, Mohammad.R.Meybodi

Abstract:

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Keywords: Learning automata, routing, algorithm, sparse graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
2056 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2055 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, The aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infra-red video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: Unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
2054 Implementation of Student-Centered Learning Approach in Building Surveying Course

Authors: Amal A. Abdel-Sattar

Abstract:

The curriculum of architecture department in Prince Sultan University includes ‘Building Surveying’ course which is usually a part of civil engineering courses. As a fundamental requirement of the course, it requires a strong background in mathematics and physics, which are not usually preferred subjects to the architecture students and many of them are not giving the required and necessary attention to these courses during their preparation year before commencing their architectural study. This paper introduces the concept and the methodology of the student-centered learning approach in the course of building surveying for architects. One of the major outcomes is the improvement in the students’ involvement in the course and how this will cover and strength their analytical weak points and improve their mathematical skills. The study is conducted through three semesters with a total number of 99 students. The effectiveness of the student-centered learning approach is studied using the student survey at the end of each semester and teacher observations. This survey showed great acceptance of the students for these methods. Also, the teachers observed a great improvement in the students’ mathematical abilities and how keener they became in attending the classes which were clearly reflected on the low absence record.

Keywords: Architecture, building surveying, student-centered learning, teaching, and learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
2053 The Fundamental Reliance of Iterative Learning Control on Stability Robustness

Authors: Richard W. Longman

Abstract:

Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.

Keywords: Iterative learning control, stability robustness, monotonic convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2052 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon

Abstract:

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

Keywords: Feature, intensity, contour, hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831