Search results for: Online flood prediction system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9716

Search results for: Online flood prediction system

8996 A Web Designer Agent, Based On Usage Mining Online Behavior of Visitors

Authors: Babak Abedin, Babak Sohrabi

Abstract:

Website plays a significant role in success of an e-business. It is the main start point of any organization and corporation for its customers, so it's important to customize and design it according to the visitors' preferences. Also, websites are a place to introduce services of an organization and highlight new service to the visitors and audiences. In this paper, we will use web usage mining techniques, as a new field of research in data mining and knowledge discovery, in an Iranian government website. Using the results, a framework for web content layour is proposed. An agent is designed to dynamically update and improve web links locations and layout. Then, we will explain how it is used to directly enable top managers of the organization to influence on the arrangement of web contents and also to enhance customization of web site navigation due to online users' behaviors.

Keywords: Web usage mining, website design, agent, website customization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
8995 Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain

Authors: Yi Yu, Lin Ma, Yong Sun, Yuantong Gu

Abstract:

This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.

Keywords: Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
8994 Analysis of Relationship between Social Media Conversation and Mainstream Coverage to Mobilize Social Movement

Authors: Sakulsri Srisaracam

Abstract:

Social media has become an important source of information for the public and the media profession. Some social issues raised on social media are picked up by journalists to report on other platforms. This relationship between social media and mainstream media can sometimes drive public debate or stimulate social movements. The question to examine is in what situations can social media conversations raise awareness and stimulate change on public issues. This study addresses the communication patterns of social media conversations driving covert issues into mainstream media and leading to social advocacy movements. In methodological terms, the study findings are based on a content analysis of Facebook, Twitter, news websites and television media reports on three different case studies – saving Bryde’s whale, protests against a government proposal to downsize the Office of Knowledge Management and Development in Thailand, and a dengue fever campaign. These case studies were chosen because they represent issues that most members of the public do not pay much attention to but social media conversations stimulated public debate and calls to action. This study found: 1) Collective social media conversations can stimulate public debate and encourage change at three levels – awareness, public debate, and action of policy and social change. The level depends on the communication patterns of online users and media coverage. 2) Patterns of communication have to be designed to combine social media conversations, online opinion leaders, mainstream media coverage and call to both online and offline action to motivate social change. Thus, this result suggests that social media is a powerful platform for collective communication and setting the agenda on public issues for mainstream media. However, for social change to succeed, social media should be used to mobilize online movements to move offline too.

Keywords: Public issue, social media conversation, social media, social movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
8993 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
8992 Increasing Profitability Supported by Innovative Methods and Designing Monitoring Software in Condition-Based Maintenance: A Case Study

Authors: Nasrin Farajiparvar

Abstract:

In the present article, a new method has been developed to enhance the application of equipment monitoring, which in turn results in improving condition-based maintenance economic impact in an automobile parts manufacturing factory. This study also describes how an effective software with a simple database can be utilized to achieve cost-effective improvements in maintenance performance. The most important results of this project are indicated here: 1. 63% reduction in direct and indirect maintenance costs. 2. Creating a proper database to analyse failures. 3. Creating a method to control system performance and develop it to similar systems. 4. Designing a software to analyse database and consequently create technical knowledge to face unusual condition of the system. Moreover, the results of this study have shown that the concept and philosophy of maintenance has not been understood in most Iranian industries. Thus, more investment is strongly required to improve maintenance conditions.

Keywords: Condition-based maintenance, Economic savings, Iran industries, Machine life prediction software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
8991 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System

Authors: Shiyun Liu

Abstract:

Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.

Keywords: Radiant floor, all-air system, thermal comfort, simulation, heating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
8990 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: Blue-Green landscape network, city crossing river, four-dimensional analysis method, planning order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
8989 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230
8988 Analysis of DNA from Fired Cartridge Casings

Authors: S. Mawlood, L. Dennany, N. Watson, B. Pickard

Abstract:

DNA analysis has been widely accepted as providing valuable evidence concerning the identity of the source of biological traces. Our work has showed that DNA samples can survive on cartridges even after firing. The study also raised the possibility of determining other information such as the age of the donor. Such information may be invaluable in certain cases where spent cartridges from automatic weapons are left behind at the scene of a crime. In spite of the nature of touch evidence and exposure to high chamber temperatures during shooting, we were still capable to retrieve enough DNA for profile typing. In order to estimate age of contributor, DNA methylation levels were analyzed using EpiTect system for retrieved DNA. However, results were not conclusive, due to low amount of input DNA.

Keywords: Age prediction, Fired cartridge, Trace DNA sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3910
8987 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu

Abstract:

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
8986 Social Commerce – E-Commerce in Social Media Context

Authors: Linda Sau-ling LAI

Abstract:

This paper aims to address the new trend of social commerce as electronic commerce leverages Web 2.0 technologies and online social media. The infusions of new technologies on the World Wide Web connect users in their homes and workplaces, thus transforming social formations and business transactions. An in-depth study of the growth and success of a social commerce site, Facebook was conducted. The investigation is finalized with a triad relational model which reflects socioeconomic life in the Internet today. The following three concepts work jointly to form a global community that has already started to take the place of traditional commerce and socialization: Web 2.0 technology, E-commerce, and online social media. A discussion of the research findings indicates that social commerce networks are sustainable because of the various incentives given to users as they collaborate with others regardless of their identity and location. The focus of this article is to increase understanding on quickly developing Web 2.0 based social media and their subsequent effects on the emerging social commerce.

Keywords: Social Commerce, Web 2.0, ElectronicCommerce, Social Media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7624
8985 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
8984 The Analysis of Hazard and Sensitivity of Potential Resource of Emergency Water Supply

Authors: A. Bumbová, M. Čáslavský, F. Božek, J. Dvořák

Abstract:

The paper deals with the analysis of hazards and sensitivity of potential resource of emergency water supply of population in a selected region of the Czech Republic. The procedure of identification and analysis of hazards and sensitivity is carried out on the basis of a unique methodology of classifying the drinking water resources earmarked for emergency supply of population. The hazard identification is based on a general register of hazards for individual parts of hydrological structure and the elements of technological equipment. It is followed by a semi-quantitative point indexation for the activation of each identified hazard, i.e. fires of anthropogenic origin, flood and the increased radioactive background accompanied by the leak of radon. Point indexation of sensitivity has been carried out at the same time. The analysis is the basis for a risk assessment of potential resource of emergency supply of population and the subsequent classification of such resource within the system of crisis planning.

Keywords: Hazard identification, sensitivity, semi-quantitative assessment, emergency water supply, crisis situation, ground water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
8983 Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.

Keywords: Critical system cascading collapse, protection system hidden failure, severe loading condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
8982 The Visualizer for Real-Time Analysis of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. This kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with a different structure of individual web sites. It is therefore difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.

Keywords: Trend, visualizer, web analysis, web 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
8981 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
8980 Meta-Search in Human Resource Management

Authors: Jürgen Dorn, Tabbasum Naz

Abstract:

In the area of Human Resource Management, the trend is towards online exchange of information about human resources. For example, online applications for employment become standard and job offerings are posted in many job portals. However, there are too many job portals to monitor all of them if someone is interested in a new job. We developed a prototype for integrating information of different job portals into one meta-search engine. First, existing job portals were investigated and XML schema documents were derived automated from these portals. Second, translation rules for transforming each schema to a central HR-XML-conform schema were determined. The HR-XML-schema is used to build a form for searching jobs. The data supplied by a user in this form is now translated into queries for the different job portals. Each result obtained by a job portal is sent to the meta-search engine that ranks the result of all received job offers according to user's preferences.

Keywords: Meta-search, Information extraction and integration, human resource management, job search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
8979 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal

Authors: Karima Siham Aoubid, Mohamed Boulemden

Abstract:

The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.

Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
8978 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
8977 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application

Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman

Abstract:

Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.

Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4482
8976 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: M. Breška, I. Peruš, V. Stankovski

Abstract:

The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
8975 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
8974 Vibration and Parametric Instability Analysis of Delaminated Composite Beams

Authors: A. Szekrényes

Abstract:

This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.

Keywords: Delamination, free vibration, parametric excitation, sweep excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
8973 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
8972 The Implications of Technological Advancements on the Constitutional Principles of Contract Law

Authors: Laura Çami (Vorpsi), Xhon Skënderi

Abstract:

In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.

Keywords: Technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250
8971 Modelling Indoor Air Carbon Dioxide (CO2)Concentration using Neural Network

Authors: J-P. Skön, M. Johansson, M. Raatikainen, K. Leiviskä, M. Kolehmainen

Abstract:

The use of neural networks is popular in various building applications such as prediction of heating load, ventilation rate and indoor temperature. Significant is, that only few papers deal with indoor carbon dioxide (CO2) prediction which is a very good indicator of indoor air quality (IAQ). In this study, a data-driven modelling method based on multilayer perceptron network for indoor air carbon dioxide in an apartment building is developed. Temperature and humidity measurements are used as input variables to the network. Motivation for this study derives from the following issues. First, measuring carbon dioxide is expensive and sensors power consumptions is high and secondly, this leads to short operating times of battery-powered sensors. The results show that predicting CO2 concentration based on relative humidity and temperature measurements, is difficult. Therefore, more additional information is needed.

Keywords: Indoor air quality, Modelling, Neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
8970 Modeling of Crude Oil Blending via Discrete-Time Neural Networks

Authors: Xiaoou Li, Wen Yu

Abstract:

Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.

Keywords: Neural networks, modeling, stability, crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
8969 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis

Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang

Abstract:

The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.

Keywords: Expectation-confirmation theory, expectation- confirmation model, meta-analysis, meta-analytic structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
8968 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: System set-up, near field communication, smartphone, Android.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
8967 Behavioral Experiments of Small Societies in Social Media: Facebook Expressions of Anchored Relationships

Authors: Nuran Öze

Abstract:

Communities and societies have been changing towards computer mediated communication. This paper explores online and offline identities and how relationships are formed and negotiated within internet environments which offer opportunities for people who know each other offline and move into relationships online. The expectations and norms of behavior within everyday life cause people to be embodied self. According to the age categories of Turkish Cypriots, their measurements of attitudes in Facebook will be investigated. Face-to-face field research and semi-structured interview methods are used in the study. Face-to-face interview has been done with Turkish Cypriots who are using Facebook already. According to the study, in constructing a linkage between real and virtual identities mostly affected from societal relations serves as a societal grooming tool for Turkish Cypriots.

Keywords: Facebook, identity, social media, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102