Search results for: Application based learning
13450 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).
Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56113449 Academic Performance of Engineering Students: The Role of Abilities & Learning Style
Authors: Sumita Chowhan
Abstract:
Abilities are important for academic success. Yet, abilities cannot be the whole story. Styles might be one source of unexplained variation. A style is a preferred way of using ones abilities. Students are thought to be incompetent not because they are lacking in abilities, but because their styles do not match the academic course chosen. The purpose of the study was to determine the role of abilities and learning styles in prediction of academic performance and their adjustment. Participants were 272 engineering students. The tools used are Myers Briggs Type Indicator, Culture Fair Intelligence Test and Student Problem Checklist. The statistical procedures employed were t-test, correlations and stepwise regressions. The analyses of the data indicated that although abilities are better predictors of academic performance, learning styles also shown a significant relationship. The study also indicates that if students learning styles matches to their chosen academic course, they tend to show better performance and less adjustment problems.
Keywords: Abilities, Academic Performance, Adjustment, Learning Styles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246313448 Modelling and Analyzing a Hospital Procedureusing a Petri-Net Approach
Authors: Mourtou Efstratia, Abdel-Badeeh M. Salem, Pavlidis George
Abstract:
Hierarchical high-level PNs (HHPNs) with time versions are a useful tool to model systems in a variety of application domains, ranging from logistics to complex workflows. This paper addresses an application domain which is receiving more and more attention: procedure that arranges the final inpatient charge in payment-s office and their management. We shall prove that Petri net based analysis is able to improve the delays during the procedure, in order that inpatient charges could be more reliable and on time.Keywords: eHealth, Petri-Nets, Hospital Services, InpatientCharges, Workflow Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197713447 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240513446 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning
Authors: Dina Tareq Ismail, Alexandria A. Proff
Abstract:
The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.Keywords: ICT Skills, M-Learning, self-efficacy, teachermotivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48113445 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment
Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet
Abstract:
Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.
Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141313444 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning
Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas
Abstract:
During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53313443 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.
Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113013442 Generating State-Based Testing Models for Object-Oriented Framework Interface Classes
Authors: Jehad Al Dallal, Paul Sorenson
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.Keywords: Framework interface classes, hooks, state-basedtesting, testing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122713441 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)
Authors: Kamal K.Bharadwaj, Rekha Kandwal
Abstract:
An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality
Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143813440 A VR Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.
Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58513439 A Framework for Enhancing Mobile Development Software for Rangsit University, Thailand
Authors: Thossaporn Thossansin
Abstract:
This paper presents the development of a mobile application for students at the Faculty of Information Technology, Rangsit University (RSU), Thailand. RSU upgrades an enrollment process by improving its information systems. Students can download the RSU APP easily in order to access the RSU substantial information. The reason of having a mobile application is to help students to access the system regardless of time and place. The objectives of this paper include: 1. To develop an application on iOS platform for those students at the Faculty of Information Technology, Rangsit University, Thailand. 2. To obtain the students’ perception towards the new mobile app. The target group is those from the freshman year till the senior year of the faculty of Information Technology, Rangsit University. The new mobile application, called as RSU APP, is developed by the department of Information Technology, Rangsit University. It contains useful features and various functionalities particularly on those that can give support to students. The core contents of the app consist of RSU’s announcement, calendar, events, activities, and ebook. The mobile app is developed on the iOS platform. The user satisfaction is analyzed from the interview data from 81 interviewees as well as a Google application like a Google form which 122 interviewees are involved. The result shows that users are satisfied with the application as they score it the most satisfaction level at 4.67 SD 0.52. The score for the question if users can learn and use the application quickly is high which is 4.82 SD 0.71. On the other hand, the lowest satisfaction rating is in the app’s form, apps lists, with the satisfaction level as 4.01 SD 0.45.Keywords: Mobile application, development of mobile application, framework of mobile development, software development for mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169613438 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors
Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa
Abstract:
In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.
Keywords: Motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168813437 Generating Class-Based Test Cases for Interface Classes of Object-Oriented Black Box Frameworks
Authors: Jehad Al Dallal, Paul Sorenson
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and their possible specifications, which helps in building reusable test cases for the implementations of these classes. This paper introduces a novel technique called all paths-state to generate state-based test cases to test the FICs at class level. The technique is experimentally evaluated. The empirical evaluation shows that all paths-state technique produces test cases with a high degree of coverage for the specifications of the implemented FICs comparing to test cases generated using round-trip path and all-transition techniques.Keywords: Hooks, object-oriented framework, frameworkinterface classes (FICs), specification-based testing, test casegeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132713436 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81013435 A New Method of Adaptation in Integrated Learning Environment
Authors: Ildar Galeev, Renat Mustaphin, C. Ardil
Abstract:
A new method of adaptation in a partially integrated learning environment that includes electronic textbook (ET) and integrated tutoring system (ITS) is described. The algorithm of adaptation is described in detail. It includes: establishment of Interconnections of operations and concepts; estimate of the concept mastering level (for all concepts); estimate of student-s non-mastering level on the current learning step of information on each page of ET; creation of a rank-order list of links to the e-manual pages containing information that require repeated work.
Keywords: Adaptation, Integrated Learning Environment, Integrated Tutoring System, Electronic Textbook.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146813434 Development and Usability Assessment of a Connected Resistance Exercise Band Application for Strength-Monitoring
Authors: J. A. Batsis, G. G. Boateng, L. M. Seo, C. L. Petersen, K. L. Fortuna, E. V. Wechsler, R. J. Peterson, S. B. Cook, D. Pidgeon, R. S. Dokko, R. J. Halter, D. F. Kotz
Abstract:
Resistance exercise bands are a core component of any physical activity strengthening program. Strength training can mitigate the development of sarcopenia, the loss of muscle mass or strength and function with aging. Yet, the adherence of such behavioral exercise strategies in a home-based setting are fraught with issues of monitoring and compliance. Our group developed a Bluetooth-enabled resistance exercise band capable of transmitting data to an open-source platform. In this work, we developed an application to capture this information in real-time, and conducted three usability studies in two mixed-aged groups of participants (n=6 each) and a group of older adults with obesity participating in a weight-loss intervention (n=20). The system was favorable, acceptable and provided iterative information that could assist in future deployment on ubiquitous platforms. Our formative work provides the foundation to deliver home-based monitoring interventions in a high-risk, older adult population.
Keywords: Application, mHealth, older adult, resistance exercise band, sarcopenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75813433 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132413432 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75813431 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183113430 English Language Learning Strategies Used by University Students: A Case Study of English and Business English Major at Suan Sunandha Rajabhat in Bangkok
Authors: Pranee Pathomchaiwat
Abstract:
The purposes of this research are 1) to study English language learning strategies used by the fourth-year students majoring in English and Business English, 2) to study the English language learning strategies which have an affect on English learning achievement, and 3) to compare the English language learning strategies used by the students majoring in English and Business English. The population and sampling comprise of 139 university students of the Suan Sunandha Rajabhat University. Research instruments are language learning strategies questionnaire which was constructed by the researcher and improved on by three experts and the transcripts that show the results of English learning achievement. The questionnaire includes 1) Language Practice Strategy 2)Memory Strategy 3) Communication Strategy 4)Making an Intelligent Guess or Compensation Strategy 5) Self-discipline in Learning Management Strategy 6) Affective Strategy 7)Self-Monitoring Strategy 8) Self-studySkill Strategy. Statistics used in the study are mean, standard deviation, T-test and One Way ANOVA, Pearson product moment correlation coefficient and Regression Analysis. The results of the findings reveal that the English language learning strategies most frequently used by the students are affective strategy, making an intelligent guess or compensation strategy, self-studyskill strategy and self-monitoring strategy respectively. The aspect of making an intelligent guess or compensation strategy had the most significant affect on English learning achievement. It is found that the English language learning strategies mostly used by the Business English major students and moderately used by the English major students. Their language practice strategies uses were significantly different at the 0.05 level and their communication strategies uses were significantly different at the 0.01 level. In addition, it is found that the poor students and the fair ones most frequently used affective strategy while the good ones most frequently used making an intelligent guess or compensation strategy. KeywordsEnglish language, language learning strategies, English learning achievement, and students majoring in English, Business English. Pranee Pathomchaiwat is an Assistant Professor in Business English Program, Suan Sunandha Rajabhat University, Bangkok, Thailand (e-mail: [email protected]).Keywords: English language, language learning strategies, English learning achievement, students majoring in English, Business English
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382113429 Neural Network Implementation Using FPGA: Issues and Application
Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan
Abstract:
.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented
Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442413428 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144513427 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences
Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam
Abstract:
The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.Keywords: Learning experiences, innovation, traditional games, trainee teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244313426 Collaborative Education Practice in a Data Structure E-Learning Course
Authors: Gang Chen, Ruimin Shen
Abstract:
This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.Keywords: Collaborative work, education, data structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169013425 Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO
Authors: Bilel Gassara, Mahmoud Abdellaoui, Nouri Masmoud
Abstract:
The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.Keywords: GSM/DCS/DECT/UMTS/WiMax, ISPD PLL, keep and capture range, Multi-Band, Synthesizer, Wireless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200013424 End To End Process to Automate Batch Application
Authors: Nagmani Lnu
Abstract:
Often, quality engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a batch application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a batch application from a financial industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in test creation and test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.
Keywords: Batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6513423 The Effects of an Information Delivery Modality on Psychology of E-learning Students
Authors: Eunil Park, Angel P. del Pobil
Abstract:
Does a communication modality matter in delivering e-learning information? With the recent growth of broadcasting systems, media technologies and e-learning contents, various systems with different communication modalities have been introduced. In accordance with these trends, this study examines the effects of the information delivery modality on psychology of students. Findings from an experiment indicated that the delivering information which includes a video modality elicited higher degrees of credibility, quality, representativeness of content, and perceived suitability for delivering information than those of auditory information. However, there is no difference between content liking and attitude. The Implications of the findings and the limitations are discussed.
Keywords: Communication modality, e-learning, multimodality, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176813422 Contributions of Non-Formal Educational Spaces for the Scientific Literacy of Deaf Students
Authors: Rafael Dias Silva
Abstract:
The school is a social institution that should promote learning situations that remain throughout life. Based on this, the teaching activities promoted in museum spaces can represent an educational strategy that contributes to the learning process in a more meaningful way. This article systematizes a series of elements that guide the use of these spaces for the scientific literacy of deaf students and as experiences of this nature are favorable for the school development through the concept of the circularity. The methodology for the didactic use of these spaces of non-formal education is one of the reflections developed in this study and how such environments can contribute to the learning in the classroom. To develop in the student the idea of association making him create connections with the curricular proposal and notice how the proposed activity is articulated. It is in our interest that the experience lived in the museum be shared collaborating for the construction of a scientific literacy and cultural identity through the research.
Keywords: Accessibility in museums, Brazilian sign language, deaf students, teacher training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80913421 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: A. Althobaiti, M. Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.
Keywords: Communication, effective information exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609