Search results for: features extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2148

Search results for: features extraction

1458 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

Authors: M. Habchi, S.M. Mesli, M. Kotbi

Abstract:

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.

Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1457 Automated Service Scene Detection for Badminton Game Analysis Using CHLAC and MRA

Authors: Fumito Yoshikawa, Takumi Kobayashi, Kenji Watanabe, Nobuyuki Otsu

Abstract:

Extracting in-play scenes in sport videos is essential for quantitative analysis and effective video browsing of the sport activities. Game analysis of badminton as of the other racket sports requires detecting the start and end of each rally period in an automated manner. This paper describes an automatic serve scene detection method employing cubic higher-order local auto-correlation (CHLAC) and multiple regression analysis (MRA). CHLAC can extract features of postures and motions of multiple persons without segmenting and tracking each person by virtue of shift-invariance and additivity, and necessitate no prior knowledge. Then, the specific scenes, such as serve, are detected by linear regression (MRA) from the CHLAC features. To demonstrate the effectiveness of our method, the experiment was conducted on video sequences of five badminton matches captured by a single ceiling camera. The averaged precision and recall rates for the serve scene detection were 95.1% and 96.3%, respectively.

Keywords: Badminton, CHLAC, MRA, Video-based motiondetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
1456 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).

All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.

Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.

The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: Polymer packaging, life cycle assessment, resource efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4489
1455 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab

Authors: Jeries Khoury

Abstract:

The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.

Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
1454 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique

Authors: Aziah Khamis, H. Shareef

Abstract:

The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.

Keywords: Classification, Islanding detection, Neural network, Phase space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
1453 Analysis of Genotype Size for an Evolvable Hardware System

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.

Keywords: Evolvable hardware, genotype size, computational intelligence, design of logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1452 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
1451 Massive Lesions Classification using Features based on Morphological Lesion Differences

Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo

Abstract:

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1450 Bed Site Selection by Wild Boar (Sus scrofa) in Baghshadi Protected Area, Yazd Province, Iran

Authors: S. Aghainajafizadeh, F. Heydari, H. Abbasian

Abstract:

Populations of wild boar present in semi-arid of central Iran. We studied features influencing bed site selection by this species in semi-arid central steppe of Iran. Habitat features of the detected bed site were compared with randomly selected by quantifying number of habitat variables in semi- arid area in Iran. The results revealed that the most important influencing factors in bed site selection were vegetation cover, number of Artemisia sieberi, percentage cover and height of Acer cinerascens, percentage cover and height of Amygdalus scoparia. This is the first ecological study of the wild boar in a protected area of the semi desert biome of Iran. Sustainability of wild boar populations in this area dependent to shrubs of Amygdalus scoparia and Acer cinerascens for thermal and camouflage cover.

Keywords: Wild boar, Bed site selection, Yazd, Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1449 Investigating Mental Workload of VR Training versus Serious Game Training on Shoot Operation Training

Authors: Ta-Min Hung, Tien-Lung Sun

Abstract:

Thanks to VR technology advanced, there are many researches had used VR technology to develop a training system. Using VR characteristics can simulate many kinds of situations to reach our training-s goal. However, a good training system not only considers real simulation but also considers learner-s learning motivation. So, there are many researches started to conduct game-s features into VR training system. We typically called this is a serious game. It is using game-s features to engage learner-s learning motivation. However, VR or Serious game has another important advantage. That is simulating feature. Using this feature can create any kinds of pressured environments. Because in the real environment may happen any emergent situations. So, increasing the trainees- pressure is more important when they are training. Most pervious researches are investigated serious game-s applications and learning performance. Seldom researches investigated how to increase the learner-s mental workload when they are training. So, in our study, we will introduce a real case study and create two types training environments. Comparing the learner-s mental workload between VR training and serious game.

Keywords: Intrinsic Motivation, Mental Workload, VR Training, Serious Game

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1448 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524
1447 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection

Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia

Abstract:

We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.

Keywords: Adaboost, Face detection, Feature selection, PSO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
1446 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data

Authors: Said M. Easa, Shinya Kikuchi

Abstract:

When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.

Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
1445 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma

Abstract:

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

Keywords: Assamese, Recognition, LPC, Spectral, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1444 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
1443 Attack Detection through Image Adaptive Self Embedding Watermarking

Authors: S. Shefali, S. M. Deshpande, S. G. Tamhankar

Abstract:

Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.

Keywords: Cryptography, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
1442 Morphing Human Faces: Automatic Control Points Selection and Color Transition

Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu

Abstract:

In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.

Keywords: color transition, genetic algorithms morphing, warping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
1441 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS

Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren

Abstract:

An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.

Keywords: Lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
1440 Web Pages Aesthetic Evaluation Using Low-Level Visual Features

Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi

Abstract:

Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.

Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1439 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
1438 Dimension Reduction of Microarray Data Based on Local Principal Component

Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal

Abstract:

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1437 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
1436 Fusion Classifier for Open-Set Face Recognition with Pose Variations

Authors: Gee-Sern Jison Hsu

Abstract:

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject-s face using the subject-s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone.

Keywords: Face recognition, open-set identification, hidden Markov model, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1435 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
1434 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
1433 Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models

Authors: Mahmoud Elmezain, Samar El-shinawy

Abstract:

Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.

Keywords: Statistical Pattern Recognition, Generative Model, Discriminative Model, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
1432 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1431 Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools

Authors: Waqas Saleem, Fan Yuqing

Abstract:

A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.

Keywords: Structural optimization, Topology optimization, Shape optimization, Tail fin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
1430 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1429 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512