Search results for: wave number
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4083

Search results for: wave number

3423 Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method

Authors: Ioannis Neokosmidis, Nikos Gkekas, Thomas Kamalakis, Thomas Sphicopoulos

Abstract:

In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.

Keywords: Monte Carlo, Nonlinear optics, optical crosstalk, Wavelength-division Multiplexing (WDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
3422 A 7DOF Manipulator Control in an Unknown Environment based on an Exact Algorithm

Authors: Pavel K. Lopatin, Artyom S. Yegorov

Abstract:

An exact algorithm for a n-link manipulator movement amidst arbitrary unknown static obstacles is presented. The algorithm guarantees the reaching of a target configuration of the manipulator in a finite number of steps. The algorithm is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the exact algorithm implementation for the control of a seven link (7 degrees of freedom, 7DOF) manipulator are given.

Keywords: Manipulator, trajectory planning, unknown obstacles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
3421 Exploration of Floristic Composition and Management of Gujar Tal in District Jaunpur

Authors: Mayank Singh, Mahendra P. Singh

Abstract:

Present paper enumerates highlights of seasonal variation in floristic composition and ecological strategies for the management of ‘Gujar Tal’ at Jaunpur in tropical semi-arid region of eastern U.P. (India). Total composition of macrophytes recorded was 47 from 26 families with maximum 6 plant species of Cyperaceae from April, 2012 to March, 2013 at certain periodic intervals. Maximum number of plants (39) was present during winter followed by (37) rainy and (27) summer seasons. The distribution pattern depicted that maximum number of plants (27) was of marshy and swampy habitats usually transitional between land and water.

Keywords: Floristic, life form, management, weeds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
3420 GGE-Biplot Analysis of Nano-Titanium Dioxide and Nano-Silica Effects on Sunflower

Authors: Naser Sabaghnia, Mohsen Janmohammadi, Mehdi Mohebodini

Abstract:

Present investigation is performed to evaluate the effects of foliar application of salicylic acid, glycine betaine, ascorbic acid, nano-silica, and nano-titanium dioxide on sunflower. Results showed that the first two principal components were sufficient to create a two-dimensional treatment by trait biplot, and such biplot accounted percentages of 49% and 19%, respectively of the interaction between traits and treatments. The vertex treatments of polygon were ascorbic acid, glycine betaine, nano-TiO2, and control indicated that high performance in some important traits consists of number of days to seed maturity, number of seeds per head, number heads per single plant, hundred seed weight, seed length, seed yield performance, and oil content. Treatments suitable for obtaining the high seed yield were identified in the vector-view function of biplot and displayed nano-silica and nano titanium dioxide as the best treatments suitable for obtaining of high seed yield.

Keywords: Drought stress, nano-silicon dioxide, oil content, TiO2 nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
3419 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
3418 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
3417 IEEE 802.11 b and g WLAN Propagation Model using Power Density Measurements at ESPOL

Authors: E. E. Mantilla, C. R. Reyes, B. G. Ramos

Abstract:

This paper describes the development of a WLAN propagation model, using Spectral Analyzer measurements. The signal is generated by two Access Points (APs) on the base floor at the administrative Communication School of ESPOL building. In general, users do not have a Q&S reference about a wireless network; however, this depends on the level signal as a function of frequency, distance and other path conditions between receiver and transmitter. Then, power density of the signal decrease as it propagates through space and data transfer rate is affected. This document evaluates and implements empirical mathematical formulation for the characterization of WLAN radio wave propagation on two aisles of the building base floor.

Keywords: frequency, Spectral Analyzer, transmitter, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
3416 Surface Plasmon Polariton Excitation by a Phase Shift Grating

Authors: T. Nakada, Y. Nakagawa, M. Haraguchi, T. Okamotoi, M. Flockert, T. Isu, G. Shinomiya

Abstract:

We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift.

Keywords: Surface Plasmon Polariton, phase shift grating, scanning probe lithography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
3415 Loan Guarantee Schemes: Private and Public Examples

Authors: Simeon Karafolas, Maciej Woźniak

Abstract:

Guarantee schemes have been introduced in the economic and financial system as response to difficulties of SMEs for the access to the banking credit. Guarantee companies first appeared at the 19e century. Last wave of the development of those schemes appeared at the decade of 1990’s in particular to the new countries members of the EU. Guarantee schemes are presented as public owned guarantee companies, private ones mainly through a mutual form, but also under a mixed form. The paper based on guarantee schemes of five countries tries to investigate the differences that can exist within different guarantee companies. This investigation is based on some indicators that are time of response to the demand of guarantee, threshold of guarantee, acceptance of applications for guarantee, jobs created or saved and bureaucratic issues. It appears that guarantee companies have not the same reaction to the demand of SMEs and some of them are much more active.

Keywords: DIFASS, Guarantees, Loans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
3414 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
3413 Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra

Authors: Jefri Marzal, Hong Xie, Chun Che Fung

Abstract:

Vertex configuration for a vertex in an orthogonal pseudo-polyhedron is an identity of a vertex that is determined by the number of edges, dihedral angles, and non-manifold properties meeting at the vertex. There are up to sixteen vertex configurations for any orthogonal pseudo-polyhedron (OPP). Understanding the relationship between these vertex configurations will give us insight into the structure of an OPP and help us design better algorithms for many 3-dimensional geometric problems. In this paper, 16 vertex configurations for OPP are described first. This is followed by a number of formulas giving insight into the relationship between different vertex configurations in an OPP. These formulas will be useful as an extension of orthogonal polyhedra usefulness on pattern analysis in 3D-digital images.

Keywords: Orthogonal Pseudo Polyhedra, Vertex configuration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
3412 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network

Authors: Powei Happiness Kerry

Abstract:

Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.  

Keywords: IoT, 5G, ICT, electromagnetic radiation, wave, field, radiofrequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
3411 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah

Abstract:

This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.

Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
3410 Generalized Mean-field Theory of Phase Unwrapping via Multiple Interferograms

Authors: Yohei Saika

Abstract:

On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.

Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, statistical mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3409 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
3408 An Index based Forward Backward Multiple Pattern Matching Algorithm

Authors: Raju Bhukya, DVLN Somayajulu

Abstract:

Pattern matching is one of the fundamental applications in molecular biology. Searching DNA related data is a common activity for molecular biologists. In this paper we explore the applicability of a new pattern matching technique called Index based Forward Backward Multiple Pattern Matching algorithm(IFBMPM), for DNA Sequences. Our approach avoids unnecessary comparisons in the DNA Sequence due to this; the number of comparisons of the proposed algorithm is very less compared to other existing popular methods. The number of comparisons rapidly decreases and execution time decreases accordingly and shows better performance.

Keywords: Comparisons, DNA Sequence, Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
3407 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
3406 A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue- Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3405 Optimization of a Triangular Fin with Variable Fin Base Thickness

Authors: Hyung Suk Kang

Abstract:

A triangular fin with variable fin base thickness is analyzed and optimized using a two-dimensional analytical method. The influence of fin base height and fin base thickness on the temperature in the fin is listed. For the fixed fin volumes, the maximum heat loss, the corresponding optimum fin effectiveness, fin base height and fin tip length as a function of the fin base thickness, convection characteristic number and dimensionless fin volume are represented. One of the results shows that the optimum heat loss increases whereas the corresponding optimum fin effectiveness decreases with the increase of fin volume.

Keywords: A triangular fin, Convection characteristic number, Heat loss, Fin base thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123
3404 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection

Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf

Abstract:

Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.

Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
3403 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments

Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh

Abstract:

In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.

Keywords: Heading, spur gear, numerical analysis, experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
3402 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink

Authors: Bandaris Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.

Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
3401 Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge

Authors: Brahim Hamid, Bertrand Le Saec, Mohamed Mosbah

Abstract:

The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.

Keywords: Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
3400 Bit-Error-Rate Performance Analysis of an Overlap-based CSS System

Authors: Taeung Yoon, Dahae Chong, Sangho Ahn, Seokho Yoon

Abstract:

In a chirp spread spectrum (CSS) system, the overlap technique is used for increasing bit rate. More overlaps can offer higher data throughput; however, they may cause more intersymbol interference (ISI) at the same time, resulting in serious bit error rate (BER) performance degradation. In this paper, we perform the BER analysis and derive a closed form BER expression for the overlap-based CSS system. The derived BER expression includes the number of overlaps as a parameter, and thus, would be very useful in determining the number of overlaps for a specified BER. The numerical results demonstrate that the BER derived in a closed form closely agrees with the simulated BER.

Keywords: CSS, DM, chirp, overlap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
3399 Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings

Authors: Yi-Hua Chen, Hsiang-Wen Tang, I-Ling Chang, Lien-Wen Chen

Abstract:

The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.

Keywords: Defect mode, Archimedean tilings, phononic crystals, whispering- gallery modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
3398 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis

Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin

Abstract:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
3397 Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

Authors: R. Alipour, F.Najarian

Abstract:

Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.

Keywords: Free explosive forming, CEL, Johnson cook.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
3396 Developing a Structured and Strategically Focused Performance Assessment System

Authors: Isabel Duarte de Almeida, João Vilas-Boas, Ana Abrantes Cabral

Abstract:

The number and adequacy of Performance-Indicators (PIs) for organisational purposes are core to the success of organisations and a major concern to the sponsor of this research. This assignment developed a procedure to improve a firm’s performance assessment system, by identifying two key-PIs out of 28 initial ones, and by setting criteria and their relative importance to validate and rank the adequacy and the right number of operational metrics. The Analytical-Hierarchy-Process was used with a synthesismethod to treat data coming from the management inquiries. Although organisational alignment has been achieved, business processes should also be targeted and PIs continuously revised.

Keywords: Strategic performance assessment systems, Key Performance Indicators (KPIs), Analytical Hierarchy Process (AHP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
3395 Plug and Play Interferometer Configuration using Single Modulator Technique

Authors: Norshamsuri Ali, Hafizulfika, Salim Ali Al-Kathiri, Abdulla Al-Attas, Suhairi Saharudin, Mohamed Ridza Wahiddin

Abstract:

We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.

Keywords: single photon, interferometer, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3394 Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

Authors: Jin-Sung Kim, Jin-Hwan Kim, Ji-Mo Park, Sung-Man Park, Won-Yong Choe, Hoon Heo

Abstract:

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Keywords: Genetic Algorithm, Auto tuning, Hybrid random number generator, Reverse Osmosis, PID controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127