Search results for: prediction error bias correction.
1722 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: Surface roughness, fused deposition modelling, adaptive neuro fuzzy inference system, ANFIS, orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001721 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters
Authors: Hongji Tang, Yanbo Gao, Yue Yu
Abstract:
This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.
Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20241720 A Special Algorithm to Approximate the Square Root of Positive Integer
Authors: Hsian Ming Goo
Abstract:
The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.
Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28021719 Transient Heat Transfer Model for Car Body Primer Curing
Authors: D. Zabala, N. Sánchez, J. Pinto
Abstract:
A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331718 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.
Keywords: NARX, prediction, stock market, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8171717 Management of Air Pollutants from Point Sources
Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde
Abstract:
Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.
Keywords: DBMS, NO2, SO2, Wind rose plots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331716 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, Impulsive Noise, SSRLS, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27011715 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471714 The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect
Authors: Malika.D Kedir-Talha, Mohammed Mehenni
Abstract:
To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained.Keywords: Doppler frequency, Doppler spectrum, estimate speed, permanent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13401713 Bangla Vowel Characterization Based on Analysis by Synthesis
Authors: Syed Akhter Hossain, M. Lutfar Rahman, Farruk Ahmed
Abstract:
Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.
Keywords: Speech, vowel, formant, synthesis, spectrum, LPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23711712 Blind Source Separation Using Modified Gaussian FastICA
Authors: V. K. Ananthashayana, Jyothirmayi M.
Abstract:
This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431711 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem
Authors: A. H. Akhaveissy
Abstract:
Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951710 Vibration Induced Fatigue Assessment in Vehicle Development Process
Authors: Fatih Kagnici
Abstract:
Improvement in CAE methods has an important role for shortening of the vehicle product development time. It is provided that validation of the design and improvements in terms of durability can be done without hardware prototype production. In recent years, several different methods have been developed in order to investigate fatigue damage of the vehicle. The intended goal among these methods is prediction of fatigue damage in a short time with reduced costs. This study developed a new fatigue damage prediction method in the automotive sector using power spectrum densities of accelerations. This study also confirmed that the weak region in vehicle can be easily detected with the method developed in this study which results were compared with conventional method.
Keywords: Fatigue damage, Power spectrum density, Vibration induced fatigue, Vehicle development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31281709 A Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis
Authors: Hadi Sadoghi Yazdi, Mehri Sadoghi Yazdi, Mohammad Reza Mohammadi
Abstract:
This paper is concerned with studying the forgetting factor of the recursive least square (RLS). A new dynamic forgetting factor (DFF) for RLS algorithm is presented. The proposed DFF-RLS is compared to other methods. Better performance at convergence and tracking of noisy chirp sinusoid is achieved. The control of the forgetting factor at DFF-RLS is based on the gradient of inverse correlation matrix. Compared with the gradient of mean square error algorithm, the proposed approach provides faster tracking and smaller mean square error. In low signal-to-noise ratios, the performance of the proposed method is superior to other approaches.
Keywords: Forgetting factor, RLS, Inverse correlation matrix, human motion analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22471708 An Improved ICI Self-Cancellation Scheme for Multi-Carrier Communication Systems
Authors: Arvind Kumar, Rajoo Pandey
Abstract:
For broadband wireless mobile communication systems the orthogonal frequency division multiplexing (OFDM) is a suitable modulation scheme. The frequency offset between transmitter and receiver local oscillator is main drawback of OFDM systems, which causes intercarrier interference (ICI) in the subcarriers of the OFDM system. This ICI degrades the bit error rate (BER) performance of the system. In this paper an improved self-ICI cancellation scheme is proposed to improve the system performance. The proposed scheme is based on discrete Fourier transform-inverse discrete Fourier transform (DFT-IDFT). The simulation results show that there is satisfactory improvement in the bit error rate (BER) performance of the present scheme.Keywords: OFDM, Intercarrier Interference, InterferenceCoefficients, DFT based Self-ICI Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551707 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.
Keywords: Cognitive radio, neural network, prediction, primary user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9881706 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11931705 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.
Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501704 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391703 Error Rate Probability for Coded MQAM with MRC Diversity in the Presence of Cochannel Interferers over Nakagami-Fading Channels
Authors: J.S. Ubhi, M.S. Patterh, T.S. Kamal
Abstract:
Exact expressions for bit-error probability (BEP) for coherent square detection of uncoded and coded M-ary quadrature amplitude modulation (MQAM) using an array of antennas with maximal ratio combining (MRC) in a flat fading channel interference limited system in a Nakagami-m fading environment is derived. The analysis assumes an arbitrary number of independent and identically distributed Nakagami interferers. The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM by plotting error probabilities versus average signal-to-interference ratio (SIR) for various values of order of diversity N, number of distinct symbols M, in order to examine the effect of cochannel interferers on the performance of the digital communication system. The diversity gains and net gains are also presented in tabular form in order to examine the performance of digital communication system in the presence of interferers, as the order of diversity increases. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems with space diversity in wireless fading channels.Keywords: Cochannel interference, maximal ratio combining, Nakagami-m fading, wireless digital communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541702 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001701 Estimation of the Mean of the Selected Population
Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal
Abstract:
Two normal populations with different means and same variance are considered, where the variance is known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the mehod of Monte-Carlo simulation and their performances are analysed with the help of graphs.Keywords: Estimation after selection, Brewster-Zidek technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14051700 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process
Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271699 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: Audit, machine learning, assessment, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10251698 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7791697 Using Simulation for Prediction of Units Movements in Case of Communication Failure
Authors: J. Hodicky, P. Frantis
Abstract:
Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.Keywords: command and control system, movement prediction, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12801696 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371695 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541694 Performance Assessment of GSO Satellite before and after Enhancing Pointing Effect
Authors: A. E. Emam, Joseph Victor, M. Abd Elghany
Abstract:
This paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined using both analytical simulations and practical measurements, taking into account all the additional sources of the pointing errors, such as East-West station keeping, orbit eccentricity, and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a mono-pulse tracking 11.1m transmitting antenna before and after the implementation of the pointing corrections.Keywords: Satellite, inclined orbit, pointing errors, coverage optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581693 Estimation of Load Impedance in Presence of Harmonics
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.
Keywords: Estimation, identification, Harmonics, Dynamic Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063