Search results for: iterative algorithms.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1737

Search results for: iterative algorithms.

1077 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar

Abstract:

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.

Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1076 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440
1075 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks

Authors: Vipin Pal, Girdhari Singh, R P Yadav

Abstract:

As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.

Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1074 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction

Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag

Abstract:

Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).

Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
1073 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee

Abstract:

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Keywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
1072 Development of Software Complex for Digitalization of Enterprise Activities

Authors: G. T. Balakayeva, K. K. Nurlybayeva, M. B. Zhanuzakov

Abstract:

In the proposed work, we have developed software and designed a software architecture for the implementation of enterprise business processes. The proposed software has a multi-level architecture using a domain-specific tool. The developed architecture is a guarantor of the availability, reliability and security of the system and the implementation of business processes, which are the basis for effective enterprise management. Automating business processes, automating the algorithmic stages of an enterprise, developing optimal algorithms for managing activities, controlling and monitoring, reducing risks and improving results help organizations achieve strategic goals quickly and efficiently. The software described in this article can connect to the corporate information system via two methods: a desktop client and a web client. With an appeal to the application server, the desktop client program connects to the information system on the company's work PCs over a local network. Outside the organization, the user can interact with the information system via a web browser, which acts as a web client and connects to a web server. The developed software consists of several integrated modules that share resources and interact with each other through an API. The following technology stack was used during development: Node js, React js, MongoDB, Ngnix, Cloud Technologies, Python.

Keywords: Algorithms, document processing, automation, integrated modules, software architecture, software design, information system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222
1071 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1070 Generic Filtering of Infinite Sets of Stochastic Signals

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: Optimal filtering, data compression, stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
1069 Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems

Authors: Jiming Yang

Abstract:

A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.

Keywords: Convergence analysis, green's function, singularly perturbed, equi-distribution, moving mesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1068 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
1067 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach

Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem

Abstract:

Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.

Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
1066 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz

Abstract:

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
1065 Design and Analysis of a Novel 8-DOF Hybrid Manipulator

Authors: H. Mohammadipanah, H. Zohoor

Abstract:

This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.

Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
1064 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1063 A Virtual Learning Environment for Deaf Children: Design and Evaluation

Authors: Nicoletta Adamo-Villani

Abstract:

The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.

Keywords: 3D Animation, Virtual Reality, Virtual Learning Environments, User-Centered Design, User-centered Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
1062 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.

Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1061 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1060 RBF modeling of Incipient Motion of Plane Sand Bed Channels

Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao

Abstract:

To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.

Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
1059 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
1058 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
1057 Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance cost. Therefore, in this paper, we introduce a new approach aimed at solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that our method provides a further improvement in term of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1056 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes

Authors: Achraf El Allali, John R. Rose

Abstract:

A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.

Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1055 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
1054 Intelligent Rescheduling Trains for Air Pollution Management

Authors: Kainat Affrin, P. Reshma, G. Narendra Kumar

Abstract:

Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2).

Keywords: Air pollution, routing protocol, network simulator, rescheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
1053 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202
1052 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: High voltage substations, nature-inspired algorithms, project management, meta-heuristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1051 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

 This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
1050 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: Atomic matters, crystal electric field, spin-orbit coupling, localized states, electron subshell, fine electronic structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
1049 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar

Abstract:

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.

Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
1048 Design of Two-Channel Quadrature Mirror Filter Banks Using Digital All-Pass Filters

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

The paper deals with the minimax design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using infinite impulse response (IIR) digital all-pass filters (DAFs). Based on the theory of two-channel QMF banks using two IIR DAFs, the design problem is appropriately formulated to result in an appropriate Chebyshev approximation for the desired group delay responses of the IIR DAFs and the magnitude response of the low-pass analysis filter. Through a frequency sampling and iterative approximation method, the design problem can be solved by utilizing a weighted least squares approach. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: Chebyshev approximation, Digital All-Pass Filter, Quadrature Mirror Filter, Weighted Least Squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743