Search results for: Feature selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1815

Search results for: Feature selection

1185 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1184 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Authors: M.K. Bhuyan, Aragala Jagan.

Abstract:

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1183 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1182 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique

Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain

Abstract:

Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.

Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
1181 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1180 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.

Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
1179 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar

Abstract:

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.

Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1178 Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making

Authors: C. Ardil

Abstract:

The decision to select an unmanned combat aircraft is complicated since several options and conflicting criteria must be considered at simultaneously. When making multiple criteria decision, it is important to consider the selected evaluation criteria, including priceability, payloadability, stealthability, speedability , and survivability. The fundamental goal of the study is to select the best unmanned combat aircraft by taking these evaluation criteria into account. The optimal aircraft was chosen using the fuzzy proximity measure method, which enables decision-makers to designate preferences as standard fuzzy set numbers during the multiple criteria decision-making process. To assess the applicability of the proposed approach, a numerical example is provided. Finally, by comparing determined unmanned combat aircraft, the proposed method produced a successful application, and the best aircraft was selected.

Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), multiple criteria group decision making (MCGDM), proximity measure method (PMM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1177 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1176 Slovenian Text-to-Speech Synthesis for Speech User Interfaces

Authors: Jerneja Žganec Gros, Aleš Mihelič, Nikola Pavešić, Mario Žganec, Stanislav Gruden

Abstract:

The paper presents the design concept of a unitselection text-to-speech synthesis system for the Slovenian language. Due to its modular and upgradable architecture, the system can be used in a variety of speech user interface applications, ranging from server carrier-grade voice portal applications, desktop user interfaces to specialized embedded devices. Since memory and processing power requirements are important factors for a possible implementation in embedded devices, lexica and speech corpora need to be reduced. We describe a simple and efficient implementation of a greedy subset selection algorithm that extracts a compact subset of high coverage text sentences. The experiment on a reference text corpus showed that the subset selection algorithm produced a compact sentence subset with a small redundancy. The adequacy of the spoken output was evaluated by several subjective tests as they are recommended by the International Telecommunication Union ITU.

Keywords: text-to-speech synthesis, prosody modeling, speech user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1175 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers

Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem

Abstract:

As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.

Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254
1174 Visual Attention Analysis on Mutated Brand Name using Eye-Tracking: A Case Study

Authors: Anirban Chowdhury, Sougata Karmakar, Swathi Matta Reddy, Sanjog J., Subrata Ghosh, Debkumar Chakrabarti

Abstract:

Brand name plays a vital role for in-shop buying behavior of consumers and mutated brand name may affect the selling of leading branded products. In Indian market, there are many products with mutated brand names which are either orthographically or phonologically similar. Due to presence of such products, Indian consumers very often fall under confusion when buying some regularly used stuff. Authors of the present paper have attempted to demonstrate relationship between less attention and false recognition of mutated brand names during a product selection process. To achieve this goal, visual attention study was conducted on 15 male college students using eye-tracker against a mutated brand name and errors in recognition were noted using questionnaire. Statistical analysis of the acquired data revealed that there was more false recognition of mutated brand name when less attention was paid during selection of favorite product. Moreover, it was perceived that eye tracking is an effective tool for analyzing false recognition of brand name mutation.

Keywords: Brand Name Mutation, Consumer Behavior, Visual Attention, Orthography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1173 Thread Lift: Classification, Technique, and How to Approach to the Patient

Authors: Panprapa Yongtrakul, Punyaphat Sirithanabadeekul, Pakjira Siriphan

Abstract:

Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern.

Keywords: Thread lift, thread lift method, thread lift technique, thread lift procedure, threading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10219
1172 Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

Authors: Stefan Menzel

Abstract:

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Keywords: Design decomposition, topographic non-negative matrix factorization, parts-based representation, self-organization, unsupervised feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1171 A Multiple-State Based Power Control for Multi-Radio Multi-Channel Wireless Mesh Networks

Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry, N. Ntlatlapa

Abstract:

Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified Channel Graphs (UCGs). Second, each network interface card (NIC) or radio assigned to a unique UCG adjusts transmission power using predicted multiple interaction state variables (IV) across UCGs. Depending on the size of queue loads and intra- and inter-channel states, each NIC optimizes transmission power locally and asynchronously. A new power selection MRMC unification protocol (PMMUP) is proposed that coordinates interactions among radios. The efficacy of the proposed method is investigated through simulations.

Keywords: Asynchronous convergence, Multi-Radio Multi-Channel (MRMC), Power Selection Multi-Radio Multi-Channel Unification Protocol (PMMUP) and Wireless Mesh Networks(WMNs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1170 User-Driven Product Line Engineering for Assembling Large Families of Software

Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

Abstract:

Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories.

This paper proposes a software engineering for a user-driven software product line in which engineers define a Feature Model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families.

As a proof of concept, a user-driven software product line is implemented for Eclipse, an integrated development environment. An Eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.

Keywords: Software Product Line, Model-driven Development, Reverse Engineering and Refactoring, Agile Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1169 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries

Authors: Faisal Bin Alam

Abstract:

Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.

Keywords: Textile and apparel, environment, sustainability, supply chain, production, clothing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
1168 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Authors: Ramaswamy Palaniappan, Nai-Jen Huan

Abstract:

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1167 Modeling Uncertainty in Multiple Criteria Decision Making Using the Technique for Order Preference by Similarity to Ideal Solution for the Selection of Stealth Combat Aircraft

Authors: C. Ardil

Abstract:

Uncertainty set theory is a generalization of fuzzy set theory and intuitionistic fuzzy set theory. It serves as an effective tool for dealing with inconsistent, imprecise, and vague information. The technique for order preference by similarity to ideal solution (TOPSIS) method is a multiple-attribute method used to identify solutions from a finite set of alternatives. It simultaneously minimizes the distance from an ideal point and maximizes the distance from a nadir point. In this paper, an extension of the TOPSIS method for multiple attribute group decision-making (MAGDM) based on uncertainty sets is presented. In uncertainty decision analysis, decision-makers express information about attribute values and weights using uncertainty numbers to select the best stealth combat aircraft.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
1166 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
1165 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho

Abstract:

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
1164 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
1163 Material Properties Evolution Affecting Demisability for Space Debris Mitigation

Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji

Abstract:

The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence various technologies and methods are explored for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. The various evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. affect demisability of spacecraft. Thus, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes that the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.

Keywords: Demisability, emissivity, lightweight, re-entry, survivability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
1162 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
1161 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1160 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization

Authors: R. Ramaprabha

Abstract:

This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.

Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4235
1159 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem

Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang

Abstract:

The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.

Keywords: Stud Krill Herd, economic dispatch, crossover, stud selection, valve-point effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
1158 A Comparison of Some Thresholding Selection Methods for Wavelet Regression

Authors: Alsaidi M. Altaher, Mohd T. Ismail

Abstract:

In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.

Keywords: wavelet regression, simulation, Threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1157 MIMO Antenna Selections using CSI from Reciprocal Channel

Authors: P. Uthansakul, K. Attakitmongkol, N. Promsuvana, M. Uthansakul

Abstract:

It is well known that the channel capacity of Multiple- Input-Multiple-Output (MIMO) system increases as the number of antenna pairs between transmitter and receiver increases but it suffers from multiple expensive RF chains. To reduce the cost of RF chains, Antenna Selection (AS) method can offer a good tradeoff between expense and performance. In a transmitting AS system, Channel State Information (CSI) feedback is necessarily required to choose the best subset of antennas in which the effects of delays and errors occurred in feedback channels are the most dominant factors degrading the performance of the AS method. This paper presents the concept of AS method using CSI from channel reciprocity instead of feedback method. Reciprocity technique can easily archive CSI by utilizing a reverse channel where the forward and reverse channels are symmetrically considered in time, frequency and location. In this work, the capacity performance of MIMO system when using AS method at transmitter with reciprocity channels is investigated by own developing Testbed. The obtained results show that reciprocity technique offers capacity close to a system with a perfect CSI and gains a higher capacity than a system without AS method from 0.9 to 2.2 bps/Hz at SNR 10 dB.

Keywords: Antenna Selection, Capacity, Channel, Measurement, MIMO, Reciprocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1156 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503