Search results for: Data delivery
7133 Consideration a Novel Manner for Data Sending Quality in Heterogeneous Radio Networks
Authors: Mohammadreza Amini, Omid Moradtalab, Ebadollah Zohrevandi
Abstract:
In real-time networks a large number of application programs are relying on video data and heterogeneous data transmission techniques. The aim of this research is presenting a method for end-to-end vouch quality service in surface applicationlayer for sending video data in comparison form in wireless heterogeneous networks. This method tries to improve the video sending over the wireless heterogeneous networks with used techniques in surface layer, link and application. The offered method is showing a considerable improvement in quality observing by user. In addition to this, other specifications such as shortage of data load that had require to resending and limited the relation period length to require time for second data sending, help to be used the offered method in the wireless devices that have a limited energy. The presented method and the achieved improvement is simulated and presented in the NS-2 software.
Keywords: Heterogeneous wireless networks, adaptation mechanism, multi-level, Handoff, stop mechanism, graceful degrades, application layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16707132 An Efficient 3D Animation Data Reduction Using Frame Removal
Authors: Jinsuk Yang, Choongjae Joo, Kyoungsu Oh
Abstract:
Existing methods in which the animation data of all frames are stored and reproduced as with vertex animation cannot be used in mobile device environments because these methods use large amounts of the memory. So 3D animation data reduction methods aimed at solving this problem have been extensively studied thus far and we propose a new method as follows. First, we find and remove frames in which motion changes are small out of all animation frames and store only the animation data of remaining frames (involving large motion changes). When playing the animation, the removed frame areas are reconstructed using the interpolation of the remaining frames. Our key contribution is to calculate the accelerations of the joints of individual frames and the standard deviations of the accelerations using the information of joint locations in the relevant 3D model in order to find and delete frames in which motion changes are small. Our methods can reduce data sizes by approximately 50% or more while providing quality which is not much lower compared to original animations. Therefore, our method is expected to be usefully used in mobile device environments or other environments in which memory sizes are limited.
Keywords: Data Reduction, Interpolation, Vertex Animation, 3D Animation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16617131 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19167130 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.
Keywords: Low visibility, RWIS, traffic safety, visibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13347129 A Comparative Analysis of Different Web Content Mining Tools
Authors: T. Suresh Kumar, M. Arthanari, N. Shanthi
Abstract:
Nowadays, the Web has become one of the most pervasive platforms for information change and retrieval. It collects the suitable and perfectly fitting information from websites that one requires. Data mining is the form of extracting data’s available in the internet. Web mining is one of the elements of data mining Technique, which relates to various research communities such as information recovery, folder managing system and simulated intellects. In this Paper we have discussed the concepts of Web mining. We contain generally focused on one of the categories of Web mining, specifically the Web Content Mining and its various farm duties. The mining tools are imperative to scanning the many images, text, and HTML documents and then, the result is used by the various search engines. We conclude by presenting a comparative table of these tools based on some pertinent criteria.
Keywords: Data Mining, Web Mining, Web Content Mining, Mining Tools, Information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35537128 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24937127 Framework for Government ICT Projects
Authors: Manal Rayes
Abstract:
In its efforts to utilize the information and communication technology to enhance the quality of public service delivery, national and local governments around the world are competing to introduce more ICT applications as tools to automate processes related to law enforcement or policy execution, increase citizen orientation, trust, and satisfaction, and create one-stop-shops for public services. In its implementation, e-Government ICTs need to maintain transparency, participation, and collaboration. Due to this diverse of mixed goals and requirements, e-Government systems need to be designed based on special design considerations in order to eliminate the risks of failure to compliance to government regulations, citizen dissatisfaction, or market repulsion. In this article we suggest a framework with guidelines for designing government information systems that takes into consideration the special requirements of the public sector. Then we introduce two case studies and show how applying those guidelines would result in a more solid system design.
Keywords: e-government, framework, guidelines, system design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16587126 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.
Keywords: Big data, bus headway prediction, machine learning, public transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15627125 Clustering Approach to Unveiling Relationships between Gene Regulatory Networks
Authors: Hiba Hasan, Khalid Raza
Abstract:
Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.
Keywords: Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21527124 Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery
Authors: S. S. Pati, L. Herojit Singh, A. C. Oliveira, V. K. Garg
Abstract:
Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chitosan has been confirmed using Fourier transform infrared spectroscopy along with signatures of octahedral and tetrahedral sites of Fe3O4 below 600cm-1. Mössbauer spectroscopy shows decrease in particle-particle interaction in presence of Au shell (72% sextet) than pure oleic coated Fe3O4 nanoparticles (88% sextet) at room temperature. At 80K, oleic acid coated Fe3O4 shows only sextets whereas the Chitosan functionalized Fe3O4 and Chitosan functionalized Fe3O4@Au core shell show presence of 5 and 11% doublet, respectively.Keywords: Magnetic nanoparticles, Fe3O4@Au core shell, iron oxide, Au nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29717123 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.
Keywords: Concrete bridges, deterioration, Markov chains, probability matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14407122 Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: I. Derek Kaka’an, P. Smolianov, D. Koh Choon Lian, S. Dion, C. Schoen, J. Norberg
Abstract:
This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.
Keywords: Football, high performance, mass participation, Nigeria, sport development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11537121 A Conceptual Query-Driven Design Framework for Data Warehouse
Authors: Resmi Nair, Campbell Wilson, Bala Srinivasan
Abstract:
Data warehouse is a dedicated database used for querying and reporting. Queries in this environment show special characteristics such as multidimensionality and aggregation. Exploiting the nature of queries, in this paper we propose a query driven design framework. The proposed framework is general and allows a designer to generate a schema based on a set of queries.Keywords: Conceptual schema, data warehouse, queries, requirements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20067120 A Prototype of Augmented Reality for Visualising Large Sensors’ Datasets
Authors: Folorunso Olufemi Ayinde, Mohd Shahrizal Sunar, Sarudin Kari, Dzulkifli Mohamad
Abstract:
In this paper we discuss the development of an Augmented Reality (AR) - based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations. Therefore we have developed a data model to effectively manage such data and enhance the computational support needed for the effective data explorations. A challenge of this approach is to reduce the data inefficiency powered by the disparate, repeated, inconsistent and missing attributes of most available sensors datasets. To handle this challenge, this paper aim to develop an AR-based scientific visualization interface which automatically identifies, localise and visualizes all necessary data relevant to a particularly selected region of interest (ROI) along the virtual pipeline network. Necessary system architectural supports needed as well as the interface requirements for such visualizations are also discussed in this paper.
Keywords: Sensor Leakages Datasets, Augmented Reality, Sensor Data-Model, Scientific Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16807119 A Study of Recycle Materials to Develop for Auto Part
Authors: Sittichai Kaewkuekool, Vanchai Laemlaksakul
Abstract:
At the present, auto part industries have become higher challenge in strategy market. As this consequence, manufacturers need to have better response to customers in terms of quality, cost, and delivery time. Moreover, they need to have a good management in factory to comply with international standard maximum capacity and lower cost. This would lead companies to have to order standard part from aboard and become the major cost of inventory. The development of auto part research by recycling materials experiment is to compare the auto parts from recycle materials to international auto parts (CKD). Factors studied in this research were the recycle material ratios of PU-foam, felt, and fabric. Results of recycling materials were considered in terms of qualities and properties on the parameters such as weight, sound absorption, water absorption, tensile strength, elongation, and heat resistance with the CKD. The results were showed that recycling materials would be used to replace for the CKD.
Keywords: International auto parts, recycling materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20747118 Personalized Applications for Advanced Healthcare through AI-ML and Blockchain
Authors: Anuja Vyas, Aikel Indurkhya, Hari Krishna Garg
Abstract:
Nearly 25 years have passed since the landmark publication of the Human Genome Project, yet scientists have only begun to scratch the surface of its potential benefits. To bridge this gap, a personalized genomic application has been envisioned as a transformative tool accessible to people worldwide. This innovative solution proposes an integrated framework combining blockchain technology, genome-specific applications, and data compression techniques, ensuring operations to be swift, secure, transparent, and space-efficient. The software harnesses advanced Artificial Intelligence and Machine Learning methodologies, such as neural networks, evaluation matrices, fuzzy logic, and expert systems, to analyze individual genomic data. It generates personalized reports by comparing a user's genome with a reference genome, highlighting significant differences. Blockchain technology, with its inherent security, encryption, and immutability features, is leveraged for robust data transport and storage. In addition, a 'Data Abbreviation' technique ensures that genetic data and reports occupy minimal space. This integrated approach promises to be a significant leap forward, potentially transforming human health and well-being on a global scale.
Keywords: Artificial intelligence in genomics, blockchain technology, data abbreviation, data compression, data security in genomics, data storage, expert systems, fuzzy logic, genome applications, genomic data analysis, human genome project, neural networks, personalized genomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417117 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM Card, mobile financial services, cryptography, secure data storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20657116 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: Motivation, online learning, pedagogy, podcast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7667115 Security Architecture for At-Home Medical Care Using Sensor Network
Authors: S.S.Mohanavalli, Sheila Anand
Abstract:
This paper proposes a novel architecture for At- Home medical care which enables senior citizens, patients with chronic ailments and patients requiring post- operative care to be remotely monitored in the comfort of their homes. This architecture is implemented using sensors and wireless networking for transmitting patient data to the hospitals, health- care centers for monitoring by medical professionals. Patients are equipped with sensors to measure their physiological parameters, like blood pressure, pulse rate etc. and a Wearable Data Acquisition Unit is used to transmit the patient sensor data. Medical professionals can be alerted to any abnormal variations in these values for diagnosis and suitable treatment. Security threats and challenges inherent to wireless communication and sensor network have been discussed and a security mechanism to ensure data confidentiality and source authentication has been proposed. Symmetric key algorithm AES has been used for encrypting the data and a patent-free, two-pass block cipher mode CCFB has been used for implementing semantic security.Keywords: data confidentiality, integrity, remotemonitoring, source authentication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17427114 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067113 A Fuzzy Implementation for Optimization of Storage Locations in an Industrial AS/RS
Authors: C. Senanayake, S. Veera Ragavan
Abstract:
Warehousing is commonly used in factories for the storage of products until delivery of orders. As the amount of products stored increases it becomes tedious to be carried out manually. In recent years, the manual storing has converted into fully or partially computer controlled systems, also known as Automated Storage and Retrieval Systems (AS/RS). This paper discusses an ASRS system, which was designed such that the best storage location for the products is determined by utilizing a fuzzy control system. The design maintains the records of the products to be/already in store and the storage/retrieval times along with the availability status of the storage locations. This paper discusses on the maintenance of the above mentioned records and the utilization of the concept of fuzzy logic in order to determine the optimum storage location for the products. The paper will further discuss on the dynamic splitting and merging of the storage locations depending on the product sizes.Keywords: ASRS, fuzzy control systems, MySQL database, dynamic splitting and merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21427112 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11377111 Critical Issues Affecting the Engagement by Staff in Professional Development for E-Learning: Findings from a Research Project within the Context of a National Tertiary Education Sector
Authors: J. Mansvelt, G. Suddaby, D. O'Hara
Abstract:
This paper focuses on issues of engagement by staff in professional development related to the delivery of e-learning. The paper reports on findings drawn from a New Zealand research project which is producing a sector-wide framework for professional development in tertiary e-learning. The research findings indicate that staff engaged in e-learning in tertiary institutions is not making the most effective use of the professional development opportunities available to them; rather they seem to gain their knowledge and support from a variety of informal means. This is despite an emphasis on the provision of professional development opportunities by both Government Policies and Institutions themselves. The conclusion drawn from the findings is that institutional approaches to professional development for e-learning do not yet fully reflect the demands and constraints that working in a digital context impose.
Keywords: Academic development, e-learning, engagement, professional development, tertiary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14487110 Content Based Sampling over Transactional Data Streams
Authors: Mansour Tarafdar, Mohammad Saniee Abade
Abstract:
This paper investigates the problem of sampling from transactional data streams. We introduce CFISDS as a content based sampling algorithm that works on a landmark window model of data streams and preserve more informed sample in sample space. This algorithm that work based on closed frequent itemset mining tasks, first initiate a concept lattice using initial data, then update lattice structure using an incremental mechanism.Incremental mechanism insert, update and delete nodes in/from concept lattice in batch manner. Presented algorithm extracts the final samples on demand of user. Experimental results show the accuracy of CFISDS on synthetic and real datasets, despite on CFISDS algorithm is not faster than exist sampling algorithms such as Z and DSS.
Keywords: Sampling, data streams, closed frequent item set mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17097109 Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks
Authors: Jirawat Thaenthong, Steven Gordon
Abstract:
MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.Keywords: IP mobility, handover, MANET, network mobility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20837108 An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)
Authors: Rosziati Ibrahim, Siow Yen Yen
Abstract:
System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.Keywords: Data Flow Diagram, Context Diagram, ConsistencyCheck, Syntax and Semantic Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34397107 Real-Time Implementation of STANAG 4539 High-Speed HF Modem
Authors: S. Saraç, F. Kara, C.Vural
Abstract:
High-frequency (HF) communications have been used by military organizations for more than 90 years. The opportunity of very long range communications without the need for advanced equipment makes HF a convenient and inexpensive alternative of satellite communications. Besides the advantages, voice and data transmission over HF is a challenging task, because the HF channel generally suffers from Doppler shift and spread, multi-path, cochannel interference, and many other sources of noise. In constructing an HF data modem, all these effects must be taken into account. STANAG 4539 is a NATO standard for high-speed data transmission over HF. It allows data rates up to 12800 bps over an HF channel of 3 kHz. In this work, an efficient implementation of STANAG 4539 on a single Texas Instruments- TMS320C6747 DSP chip is described. The state-of-the-art algorithms used in the receiver and the efficiency of the implementation enables real-time high-speed data / digitized voice transmission over poor HF channels.
Keywords: High frequency, modem, STANAG 4539.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53417106 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: Data envelopment analysis, super efficiency, financial ratios, BCC model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8767105 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17377104 Study of Peptide Fragment of Alpha-Fetoprotein as a Radionuclide Vehicle
Authors: Alesya Ya. Maruk, Olga E. Klementyeva, Ekaterina I. Lesik, Anton A. Larenkov, Alexander B. Bruskin
Abstract:
Alpfa-fetoprotein and its fragments may be an important vehicle for targeted delivery of radionuclides to the tumor. We investigated the effect of conditions on the labeling of biologically active synthetic peptide based on the (F-afp) with technetium-99m. The influence of the nature of the buffer solution, pH, concentration of reductant, concentration of the peptide and the reaction temperature on the yield of labeling was examined. As a result, the following optimal conditions for labeling of (F-afp) are found: pH 8.5 (phosphate and bicarbonate buffers) and pH from 1.7 to 7.0 (citrate buffer). The reaction proceeds with sufficient yield at room temperature for 30 min at the concentration of SnCl2 and (Fafp) (F-afp) is to be less than 10 mkg/ml and 25 mkg/ml, respectively. Investigations of the test drug accumulation in the tumor cells of human breast cancer were carried out. Results can be assumed that the in vivo study of the (F-afp) in experimental tumor lesions will show concentrations sufficient for imaging these lesions by SPECT.
Keywords: peptide, technetium-99m, tumor, SPECT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610