Search results for: thermal performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6803

Search results for: thermal performance

293 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. This paper focuses on the issue of mining Quantified rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses Quantified production rules as initial individuals of GP and discovers hierarchical structure. In proposed approach rules are quantified by using Dempster Shafer theory. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Quantified Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy, using Dempster Shafer theory. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
292 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
291 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
290 Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities

Authors: Yu-Cheng Chou, Po Ting Lin

Abstract:

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Keywords: Multiple Commodities, Multi-State Flow Network (MSFN), Time Constraints, Worst-Case Reliability (WCR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
289 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: Vehicle, monitoring system, LoRa, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
288 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
287 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
286 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology.

At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete.

A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure.

The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: Self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
285 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
284 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
283 Signing the First Packet in Amortization Scheme for Multicast Stream Authentication

Authors: Mohammed Shatnawi, Qusai Abuein, Susumu Shibusawa

Abstract:

Signature amortization schemes have been introduced for authenticating multicast streams, in which, a single signature is amortized over several packets. The hash value of each packet is computed, some hash values are appended to other packets, forming what is known as hash chain. These schemes divide the stream into blocks, each block is a number of packets, the signature packet in these schemes is either the first or the last packet of the block. Amortization schemes are efficient solutions in terms of computation and communication overhead, specially in real-time environment. The main effictive factor of amortization schemes is it-s hash chain construction. Some studies show that signing the first packet of each block reduces the receiver-s delay and prevents DoS attacks, other studies show that signing the last packet reduces the sender-s delay. To our knowledge, there is no studies that show which is better, to sign the first or the last packet in terms of authentication probability and resistance to packet loss. In th is paper we will introduce another scheme for authenticating multicast streams that is robust against packet loss, reduces the overhead, and prevents the DoS attacks experienced by the receiver in the same time. Our scheme-The Multiple Connected Chain signing the First packet (MCF) is to append the hash values of specific packets to other packets,then append some hashes to the signature packet which is sent as the first packet in the block. This scheme is aspecially efficient in terms of receiver-s delay. We discuss and evaluate the performance of our proposed scheme against those that sign the last packet of the block.

Keywords: multicast stream authentication, hash chain construction, signature amortization, authentication probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
282 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

Authors: Yesubai Rubavathi Charles, Ravi Ramraj

Abstract:

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
281 The Effect of Cow Reproductive Traits on Lifetime Productivity and Longevity

Authors: Lāsma Cielava, Daina Jonkus, Līga Paura

Abstract:

The age of first calving (AFC) is one of the most important factors that have a significant impact on cow productivity in different lactations and its whole life. A belated AFC leads to reduced reproductive performance and it is one of the main reasons for reduced longevity. Cows that calved in time period from 2001-2007 and in this time finished at least four lactations were included in the database. Data were obtained from 68841 crossbred Holstein Black and White (HM), crossbred Latvian Brown (LB), and Latvian Brown genetic resources (LBGR) cows. Cows were distributed in four groups depending on age at first calving. The longest lifespan was conducted for LBGR cows, but they were also characterized with lowest lifetime milk yield and life day milk yield. HM breed cows had the shortest lifespan, but in the lifespan of 2862.2 days was obtained in average 37916.4 kg milk accordingly 13.2 kg milk in one life day. HM breed cows were also characterized with longer calving intervals (CI) in first four lactations, but LBGR cows had the shortest CI in the study group. Age at first calving significantly affected the length of CI in different lactations (p<0.05). HM cows that first time calved >30 months old in the fourth lactation had the longest CI in all study groups (421.4 days). The LBGR cows were characterized with the shortest CI, but there was slight increase in second and third lactation. Age at first calving had a significant impact on cows’ age in each calving time. In the analysis, cow group was conducted that cows with age at first calving <24 months or in average 580.5 days at the time of fifth calving were 2156.7 days (5.9 years) old, but cows with age at first calving >30 months (932.6 days) at the time of fifth calving were 2560.9 days (7.3 years) old.

Keywords: Age at first calving, calving interval, longevity, milk yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
280 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique

Authors: S. Jalaja, A. M. Vijaya Prakash

Abstract:

Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.

Keywords: Carry save adder Karatsuba multiplication, mid-range Karatsuba multiplication, modified FFA, transposed filter, retiming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
279 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
278 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: Flow, aeration, bioreactor, oxygen concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
277 Analysis of Supply Side Factors Affecting Bank Financing of Non-Oil Exports in Nigeria

Authors: Sama’ila Idi Ningi, Abubakar Yusuf Dutse

Abstract:

The banking sector poses a lot of problems in Nigeria in general and the non-oil export sector in particular. The banks' lack effectiveness in handling small, medium or long-term credit risk (lack of training of loan officers, lack of information on borrowers and absence of a reliable credit registry) results in non-oil exporters being burdened with high requirements, such as up to three years of financial statements, enough collateral to cover both the loan principal and interest (including a cash deposit that may be up to 30% of the loans' net present value), and to provide every detail of the international trade transaction in question. The stated problems triggered this research. Consequently, information on bank financing of non-oil exports was collected from 100 respondents from the 20 Deposit Money Banks (DMBs) in Nigeria. The data was analysed by the use of descriptive statistics correlation and regression. It is found that, Nigerian banks are participants in the financing of non-oil exports. Despite their participation, the rate of interest for credit extended to non-oil export is usually high, ranging between 15-20%. Small and medium sized non-oil export businesses lack the credit history for banks to judge them as reputable. Banks also consider the non-oil export sector very risky for investment. The banks actually do grant less credit than the exporters may require and therefore are not properly funded by banks. Banks grant very low volume of foreign currency loan in addition to, unfavorable exchange rate at which Naira is exchanged to the Dollar and other currencies in the country. This makes importation of inputs costly and negatively impacted on the non-oil export performance in Nigeria.

Keywords: Supply Side Factors, Bank Financing, Non-Oil Exports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720
276 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR based phylogenetic analysis was also carried out. The average operating and environmental parameters as well as specific nitrification rate of plant was investigated during the study. During the investigation the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with influent ammonia concentration of 31.69 and 24.47 mg/L. The influent flow rates (ML/Day) was 96.81 during period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit (amoA) gene, ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), specific nitrification rate, PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
275 Online Information Seeking: A Review of the Literature in the Health Domain

Authors: Sharifah Sumayyah Engku Alwi, Masrah Azrifah Azmi Murad

Abstract:

The development of the information technology and Internet has been transforming the healthcare industry. The internet is continuously accessed to seek for health information and there are variety of sources, including search engines, health websites, and social networking sites. Providing more and better information on health may empower individuals, however, ensuring a high quality and trusted health information could pose a challenge. Moreover, there is an ever-increasing amount of information available, but they are not necessarily accurate and up to date. Thus, this paper aims to provide an insight of the models and frameworks related to online health information seeking of consumers. It begins by exploring the definition of information behavior and information seeking to provide a better understanding of the concept of information seeking. In this study, critical factors such as performance expectancy, effort expectancy, and social influence will be studied in relation to the value of seeking health information. It also aims to analyze the effect of age, gender, and health status as the moderator on the factors that influence online health information seeking, i.e. trust and information quality. A preliminary survey will be carried out among the health professionals to clarify the research problems which exist in the real world, at the same time producing a conceptual framework. A final survey will be distributed to five states of Malaysia, to solicit the feedback on the framework. Data will be analyzed using SPSS and SmartPLS 3.0 analysis tools. It is hoped that at the end of this study, a novel framework that can improve online health information seeking is developed. Finally, this paper concludes with some suggestions on the models and frameworks that could improve online health information seeking.

Keywords: Information behavior, information seeking, online health information, technology acceptance model, the theory of planned behavior, UTAUT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
274 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 393
273 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields

Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul

Abstract:

The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.

Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
272 SMaTTS: Standard Malay Text to Speech System

Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan

Abstract:

This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.

Keywords: Natural Language Processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
271 Development and Validation of a UPLC Method for the Determination of Albendazole Residues on Pharmaceutical Manufacturing Equipment Surfaces

Authors: R. S. Chandan, M. Vasudevan, Deecaraman, B. M. Gurupadayya

Abstract:

In Pharmaceutical industries, it is very important to remove drug residues from the equipment and areas used. The cleaning procedure must be validated, so special attention must be devoted to the methods used for analysis of trace amounts of drugs. A rapid, sensitive and specific reverse phase ultra performance liquid chromatographic (UPLC) method was developed for the quantitative determination of Albendazole in cleaning validation swab samples. The method was validated using an ACQUITY HSS C18, 50 x 2.1mm, 1.8μ column with a isocratic mobile phase containing a mixture of 1.36g of Potassium dihydrogenphosphate in 1000mL MilliQ water, 2mL of triethylamine and pH adjusted to 2.3 ± 0.05 with ortho-phosphoric acid, Acetonitrile and Methanol (50:40:10 v/v). The flow rate of the mobile phase was 0.5 mL min-1 with a column temperature of 350C and detection wavelength at 254nm using PDA detector. The injection volume was 2µl. Cotton swabs, moisten with acetonitrile were used to remove any residue of drug from stainless steel, teflon, rubber and silicon plates which mimic the production equipment surface and the mean extraction-recovery was found to be 91.8. The selected chromatographic condition was found to effectively elute Albendazole with retention time of 0.67min. The proposed method was found to be linear over the range of 0.2 to 150µg/mL and correlation coefficient obtained is 0.9992. The proposed method was found to be accurate, precise, reproducible and specific and it can also be used for routine quality control analysis of these drugs in biological samples either alone or in combined pharmaceutical dosage forms.

Keywords: Cleaning validation, Albendazole, residues, swab analysis, UPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
270 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
269 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis

Abstract:

This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.

Keywords: Sliding mode control, pulse-width modulation, hysteresis modulation, DC-DC converter, parallel multi-cells converter, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
268 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault

Authors: V. S. Meenakshi, G. Padmavathi

Abstract:

Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.

Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
267 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
266 Soil Evaluation for Cashew, Cocoa and Oil Palm in Akure, South-West Nigeria

Authors: Francis Bukola Dada, Samuel Ojo Ajayi, Babatunde Sunday Ewulo, Kehinde Oseni Saani

Abstract:

A key element in the sustainability of the soil-plant relationship in crop yield and performance is the soil's capacity to support tree crops prior to establishment. With the intention of determining the suitability and limitations of the soils of the locations, the northern and southern portions of Akure, a rainforest in Nigeria, were chosen for the suitability evaluation of land for tree crops. In the study area, 16 pedons were established with the help of the Global Positioning System (GPS), the locations were georeferenced and samples were taken from the pedons. The samples were subjected to standard physical and chemical testing. The findings revealed that soils in the research locations were deep to extremely deep, with pH ranging from highly acidic to slightly acidic (4.94 to 6.71). and that sand predominated. The soils had low levels of organic carbon, effective cation exchange capacity (ECEC), total nitrogen, and available phosphorus, whereas exchangeable cations were evaluated as low to moderate. The suitability result indicated that only Pedon 2 and Pedon 14 are currently highly suitable (S1) for the production of oil palms, while others ranged from moderately suitable to marginally suitable. Pedons 4, 12, and 16 were not suitable (N1), respectively, but other Pedons were moderately suitable (S2) and marginally suitable (S3) for the cultivation of cocoa. None of the study areas are currently highly suitable for the production of oil palms. The poor soil texture and low fertility status were the two main drawbacks found. Finally, sound management practices and soil conservation are essential for fertility sustainability.

Keywords: Cashew, cocoa, land evaluation, oil palm, soil fertility suitability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
265 Cellular Automata Based Robust Watermarking Architecture towards the VLSI Realization

Authors: V. H. Mankar, T. S. Das, S. K. Sarkar

Abstract:

In this paper, we have proposed a novel blind watermarking architecture towards its hardware implementation in VLSI. In order to facilitate this hardware realization, cellular automata (CA) concept is introduced. The CA has been already accepted as an attractive structure for VLSI implementation because of its modularity, parallelism, high performance and reliability. The hardware realizable multiresolution spread spectrum watermarking techniques are very few in numbers in spite of their best ever resiliency against signal impairments. This is because of the computational cost and complexity associated with their different filter banks and lifting techniques. The concept of cellular automata theory in order to form a new transform domain technique i.e. Cellular Automata Transform (CAT) have been incorporated. Since CA provides spreading sequences having very low cross-correlation properties, the CA based pseudorandom sequence generator is considered in the present work. Considering the watermarking technique as a digital communication process, an error control coding (ECC) must be incorporated in the data hiding schemes. Besides the hardware implementation of entire CA based data hiding technique, the individual blocks of the algorithm using CA provide the best result than that of some other methods irrespective of the hardware and software technique. The Cellular Automata Transform, CA based PN sequence generator, and CA ECC are the requisite blocks that are developed not only to meet the reliable hardware requirements but also for the basic spread spectrum watermarking features. The proposed algorithm shows statistical invisibility and resiliency against various common signal-processing operations. This algorithmic design utilizes the existing allocated bandwidth in the data transmission channel in a more efficient manner.

Keywords: Cellular automata, watermarking, error control coding, PN sequence, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
264 Respirator System For Total Liquid Ventilation

Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe

Abstract:

Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.

Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542