Search results for: oddball task
293 Proposing an Efficient Method for Frequent Pattern Mining
Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha
Abstract:
Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687292 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia
Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi
Abstract:
Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.
Keywords: Artificial neural networks, short-term load forecasting, back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114291 Towards Automatic Recognition and Grading of Ganoderma Infection Pattern Using Fuzzy Systems
Authors: Mazliham Mohd Su'ud, Pierre Loonis, Idris Abu Seman
Abstract:
This paper deals with the extraction of information from the experts to automatically identify and recognize Ganoderma infection in oil palm stem using tomography images. Expert-s knowledge are used as rules in a Fuzzy Inference Systems to classify each individual patterns observed in he tomography image. The classification is done by defining membership functions which assigned a set of three possible hypotheses : Ganoderma infection (G), non Ganoderma infection (N) or intact stem tissue (I) to every abnormalities pattern found in the tomography image. A complete comparison between Mamdani and Sugeno style,triangular, trapezoids and mixed triangular-trapezoids membership functions and different methods of aggregation and defuzzification is also presented and analyzed to select suitable Fuzzy Inference System methods to perform the above mentioned task. The results showed that seven out of 30 initial possible combination of available Fuzzy Inference methods in MATLAB Fuzzy Toolbox were observed giving result close to the experts estimation.
Keywords: Fuzzy Inference Systems, Tomography analysis, Modelizationof expert's information, Ganoderma Infection pattern recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841290 Hippocampus Segmentation using a Local Prior Model on its Boundary
Authors: Dimitrios Zarpalas, Anastasios Zafeiropoulos, Petros Daras, Nicos Maglaveras
Abstract:
Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.Keywords: Medical imaging & processing, Brain MRI segmentation, hippocampus segmentation, hippocampus-amygdala missingboundary, weak boundary segmentation, region based segmentation, prior information, local weighting scheme in level sets, spatialdistribution of labels, gradient distribution on boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757289 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions
Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab
Abstract:
Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.Keywords: Chemical Engineering, R&D Project, MCDM, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4093288 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment
Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai
Abstract:
Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709287 An Approach for Reducing the End-to-end Delay and Increasing Network Lifetime in Mobile Adhoc Networks
Authors: R. Asokan, A. M. Natarajan
Abstract:
Mobile adhoc network (MANET) is a collection of mobile devices which form a communication network with no preexisting wiring or infrastructure. Multiple routing protocols have been developed for MANETs. As MANETs gain popularity, their need to support real time applications is growing as well. Such applications have stringent quality of service (QoS) requirements such as throughput, end-to-end delay, and energy. Due to dynamic topology and bandwidth constraint supporting QoS is a challenging task. QoS aware routing is an important building block for QoS support. The primary goal of the QoS aware protocol is to determine the path from source to destination that satisfies the QoS requirements. This paper proposes a new energy and delay aware protocol called energy and delay aware TORA (EDTORA) based on extension of Temporally Ordered Routing Protocol (TORA).Energy and delay verifications of query packet have been done in each node. Simulation results show that the proposed protocol has a higher performance than TORA in terms of network lifetime, packet delivery ratio and end-to-end delay.Keywords: EDTORA, Mobile Adhoc Networks, QoS, Routing, TORA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392286 Speckle Reducing Contourlet Transform for Medical Ultrasound Images
Authors: P.S. Hiremath, Prema T. Akkasaligar, Sharan Badiger
Abstract:
Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement.Keywords: Contourlet transform, Despeckling, Pyramidal directionalfilter bank, Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448285 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.
Keywords: Connected components, Embrace threads, Local weighted kernel, Structuring element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175284 An Information Theoretic Approach to Rescoring Peptides Produced by De Novo Peptide Sequencing
Authors: John R. Rose, James P. Cleveland, Alvin Fox
Abstract:
Tandem mass spectrometry (MS/MS) is the engine driving high-throughput protein identification. Protein mixtures possibly representing thousands of proteins from multiple species are treated with proteolytic enzymes, cutting the proteins into smaller peptides that are then analyzed generating MS/MS spectra. The task of determining the identity of the peptide from its spectrum is currently the weak point in the process. Current approaches to de novo sequencing are able to compute candidate peptides efficiently. The problem lies in the limitations of current scoring functions. In this paper we introduce the concept of proteome signature. By examining proteins and compiling proteome signatures (amino acid usage) it is possible to characterize likely combinations of amino acids and better distinguish between candidate peptides. Our results strongly support the hypothesis that a scoring function that considers amino acid usage patterns is better able to distinguish between candidate peptides. This in turn leads to higher accuracy in peptide prediction.Keywords: Tandem mass spectrometry, proteomics, scoring, peptide, de novo, mutual information
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733283 Faster FPGA Routing Solution using DNA Computing
Authors: Manpreet Singh, Parvinder Singh Sandhu, Manjinder Singh Kahlon
Abstract:
There are many classical algorithms for finding routing in FPGA. But Using DNA computing we can solve the routes efficiently and fast. The run time complexity of DNA algorithms is much less than other classical algorithms which are used for solving routing in FPGA. The research in DNA computing is in a primary level. High information density of DNA molecules and massive parallelism involved in the DNA reactions make DNA computing a powerful tool. It has been proved by many research accomplishments that any procedure that can be programmed in a silicon computer can be realized as a DNA computing procedure. In this paper we have proposed two tier approaches for the FPGA routing solution. First, geometric FPGA detailed routing task is solved by transforming it into a Boolean satisfiability equation with the property that any assignment of input variables that satisfies the equation specifies a valid routing. Satisfying assignment for particular route will result in a valid routing and absence of a satisfying assignment implies that the layout is un-routable. In second step, DNA search algorithm is applied on this Boolean equation for solving routing alternatives utilizing the properties of DNA computation. The simulated results are satisfactory and give the indication of applicability of DNA computing for solving the FPGA Routing problem.Keywords: FPGA, Routing, DNA Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595282 Software Reliability Prediction Model Analysis
Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.
Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684281 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems
Abstract:
Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433280 A Novel Prostate Segmentation Algorithm in TRUS Images
Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta
Abstract:
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.
Keywords: Prostate segmentation, stick filter, neural network, active contour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971279 Harris Extraction and SIFT Matching for Correlation of Two Tablets
Authors: Ali Alzaabi, Georges Alquié, Hussain Tassadaq, Ali Seba
Abstract:
This article presents the developments of efficient algorithms for tablet copies comparison. Image recognition has specialized use in digital systems such as medical imaging, computer vision, defense, communication etc. Comparison between two images that look indistinguishable is a formidable task. Two images taken from different sources might look identical but due to different digitizing properties they are not. Whereas small variation in image information such as cropping, rotation, and slight photometric alteration are unsuitable for based matching techniques. In this paper we introduce different matching algorithms designed to facilitate, for art centers, identifying real painting images from fake ones. Different vision algorithms for local image features are implemented using MATLAB. In this framework a Table Comparison Computer Tool “TCCT" is designed to facilitate our research. The TCCT is a Graphical Unit Interface (GUI) tool used to identify images by its shapes and objects. Parameter of vision system is fully accessible to user through this graphical unit interface. And then for matching, it applies different description technique that can identify exact figures of objects.Keywords: Harris Extraction and SIFT Matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738278 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces
Authors: Bo Liu, Liangtian Gao, Idrees Qasim
Abstract:
The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.
Keywords: Dynamics, statics, roll, trim, dynamic load, tilt, vertical displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648277 Array Signal Processing: DOA Estimation for Missing Sensors
Authors: Lalita Gupta, R. P. Singh
Abstract:
Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.
Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024276 Emergency Response Plan Establishment and Computerization through the Analysis of the Disasters Occurring on Long-Span Bridges by Type
Authors: Sungnam Hong, Sun-Kyu Park, Dooyong Cho, Jinwoong Choi
Abstract:
In this paper, a strategy for long-span bridge disaster response was developed, divided into risk analysis, business impact analysis, and emergency response plan. At the risk analysis stage, the critical risk was estimated. The critical risk was “car accident."The critical process by critical-risk classification was assessed at the business impact analysis stage. The critical process was the task related to the road conditions and traffic safety. Based on the results of the precedent analysis, an emergency response plan was established. By making the order of the standard operating procedures clear, an effective plan for dealing with disaster was formulated. Finally, a prototype software was developed based on the research findings. This study laid the foundation of an information-technology-based disaster response guideline and is significant in that it computerized the disaster response plan to improve the plan-s accessibility.
Keywords: Emergency response; Long-span bridge; Disaster management; Standard operating procedure; Ubiquitous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837275 Novel Security Strategy for Real Time Digital Videos
Authors: Prakash Devale, R. S. Prasad, Amol Dhumane, Pritesh Patil
Abstract:
Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.
Keywords: Data Hiding, Digital Watermarking, video coding H.264, Rate Control, Block DCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564274 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning
Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang
Abstract:
Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.
Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907273 Cooperative Sensing for Wireless Sensor Networks
Authors: Julien Romieux, Fabio Verdicchio
Abstract:
Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.Keywords: Cooperative signal processing, power management, signal representation, signal approximation, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788272 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning
Authors: Yasaswi Palagummi, Sareh Rowlands
Abstract:
Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GZSL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets - AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.
Keywords: Generalised Zero-shot Learning, Inductive Learning, Shifted-Window Attention, Swin Transformer, Vision Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228271 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.
Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699270 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park
Abstract:
A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.
Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724269 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images
Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin
Abstract:
Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.
Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999268 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis
Abstract:
Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253267 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134266 On Pattern-Based Programming towards the Discovery of Frequent Patterns
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop
Abstract:
The problem of frequent pattern discovery is defined as the process of searching for patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a database. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages. Such paradigm is inefficient when set of patterns is large and the frequent pattern is long. We suggest a high-level declarative style of programming apply to the problem of frequent pattern discovery. We consider two languages: Haskell and Prolog. Our intuitive idea is that the problem of finding frequent patterns should be efficiently and concisely implemented via a declarative paradigm since pattern matching is a fundamental feature supported by most functional languages and Prolog. Our frequent pattern mining implementation using the Haskell and Prolog languages confirms our hypothesis about conciseness of the program. The comparative performance studies on line-of-code, speed and memory usage of declarative versus imperative programming have been reported in the paper.Keywords: Frequent pattern mining, functional programming, pattern matching, logic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345265 A Novel FIFO Design for Data Transfer in Mixed Timing Systems
Authors: Mansi Jhamb, R. K. Sharma, A. K. Gupta
Abstract:
In the current scenario, with the increasing integration densities, most system-on-chip designs are partitioned into multiple clock domains. In this paper, an asynchronous FIFO (First-in First-out pipeline) design is employed as a data transfer interface between two independent clock domains. Since the clocks on the either sides of the FIFO run at a different speed, the task to ensure the correct data transmission through this FIFO is manually performed. Firstly an existing asynchronous FIFO design is discussed and simulated. Gate-level simulation results depicted the flaw in existing design. In order to solve this problem, a novel modified asynchronous FIFO design is proposed. The results obtained from proposed design are in perfect accordance with theoretical expectations. The proposed asynchronous FIFO design outperforms the existing design in terms of accuracy and speed. In order to evaluate the performance of the FIFO designs presented in this paper, the circuits were implemented in 0.24µ TSMC CMOS technology and simulated at 2.5V using HSpice (© Avant! Corporation). The layout design of the proposed FIFO is also presented.
Keywords: Asynchronous, Clock, CMOS, C-element, FIFO, Globally Asynchronous Locally Synchronous (GALS), HSpice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079264 An Efficient Algorithm for Computing all Program Forward Static Slices
Authors: Jehad Al Dallal
Abstract:
Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program backward slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. The existing algorithms for computing program slices are introduced to compute a slice at a program point. In these algorithms, the program, or the model that represents the program, is traversed completely or partially once. To compute more than one slice, the same algorithm is applied for every point of interest in the program. Thus, the same program, or program representation, is traversed several times. In this paper, an algorithm is introduced to compute all forward static slices of a computer program by traversing the program representation graph once. Therefore, the introduced algorithm is useful for software engineering applications that require computing program slices at different points of a program. The program representation graph used in this paper is called Program Dependence Graph (PDG).Keywords: Program slicing, static slicing, forward slicing, program dependence graph (PDG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469