Search results for: logic circuits.
169 Intrabody Communication Using Different Ground Configurations in Digital Door Lock
Authors: Daewook Kim, Gilwon Yoon
Abstract:
Intrabody communication (IBC) is a new way of transferring data using human body as a medium. Minute current can travel though human body without any harm. IBC can remove electrical wires for human area network. IBC can be also a secure communication network system unlike wireless networks which can be accessed by anyone with bad intentions. One of the IBC systems is based on frequency shift keying modulation where individual data are transmitted to the external devices for the purpose of secure access such as digital door lock. It was found that the quality of IBC data transmission was heavily dependent on ground configurations of electronic circuits. Reliable IBC transmissions were not possible when both of the transmitter and receiver used batteries as circuit power source. Transmission was reliable when power supplies were used as power source for both transmitting and receiving sites because the common ground was established through the grounds of instruments such as power supply and oscilloscope. This was due to transmission dipole size and the ground effects of floor and AC power line. If one site used battery as power source and the other site used the AC power as circuit power source, transmission was possible.
Keywords: Frequency shift keying, Ground, Intrabody, Communication, door lock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019168 Performance Analysis of Brain Tumor Detection Based On Image Fusion
Authors: S. Anbumozhi, P. S. Manoharan
Abstract:
Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.
Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058167 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller
Authors: Thandar Aung, Tun Lin Naing
Abstract:
In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417166 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean-Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods
Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871165 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3992164 DIFFER: A Propositionalization approach for Learning from Structured Data
Authors: Thashmee Karunaratne, Henrik Böstrom
Abstract:
Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.Keywords: Machine learning, Structure classification, Propositionalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222163 Verification of Protocol Design using UML - SMV
Authors: Prashanth C.M., K. Chandrashekar Shet
Abstract:
In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.
Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855162 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit
Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang
Abstract:
A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.
Keywords: High gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra Series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992161 Implementation the Average Input Current Mode Control of Two-Phase Interleaved Boost Converter Using Low-Cost Microcontroller
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.
Keywords: Average input current mode control, interleaved boost converter, low-cost microcontroller, PI controller, switching function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351160 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device
Authors: K. N. Dinesh Babu, G. R. Manjunatha, R. Ramaprabha, V. Rajini, M. V. Gopalan
Abstract:
In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an Intelligent Electronic Device (IED) is discussed. It has been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However, this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.Keywords: Transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4027159 Temperature Control of Industrial Water Cooler using Hot-gas Bypass
Authors: Jung-in Yoon, Seung-taek Oh, Seung-moon Baek, Jun-hyuk Choi, Jong-yeong Byun, Seok-kwon Jeong, Choon-guen Moon
Abstract:
In this study, we experiment on precise control outlet temperature of water from the water cooler with hot-gas bypass method based on PI control logic for machine tool. Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler.Keywords: Hot-gas bypass, Water cooler, PI control, Electronic Expansion Valve, Gain tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160158 Improved Modulo 2n +1 Adder Design
Authors: Somayeh Timarchi, Keivan Navi
Abstract:
Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.Keywords: Modulo 2n+1 arithmetic, residue number system, low power, ripple-carry adders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903157 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898156 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm
Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931155 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846154 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques
Authors: R. Santhosh, T. Ravichandran
Abstract:
This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918153 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks
Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson
Abstract:
Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.
Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283152 Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007
Authors: S. Boorboor, S. A. H. Feghhi, H. Jafari
Abstract:
The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today’s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from ID-VG characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems.
Keywords: Threshold voltage shift, MOS transistor, linear extrapolation, gamma irradiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380151 Real Time Speed Estimation of Vehicles
Authors: Azhar Hussain, Kashif Shahzad, Chunming Tang
Abstract:
this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.
Keywords: Defuzzification, Fuzzy similarity approach, lane cropping, Maximum a Posterior Probability (MAP) estimator, Speed estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806150 Formal Verification of a Multicast Protocol in Mobile Networks
Authors: M. Matash Borujerdi, S.M. Mirzababaei
Abstract:
As computer network technology becomes increasingly complex, it becomes necessary to place greater requirements on the validity of developing standards and the resulting technology. Communication networks are based on large amounts of protocols. The validity of these protocols have to be proved either individually or in an integral fashion. One strategy for achieving this is to apply the growing field of formal methods. Formal methods research defines systems in high order logic so that automated reasoning can be applied for verification. In this research we represent and implement a formerly announced multicast protocol in Prolog language so that certain properties of the protocol can be verified. It is shown that by using this approach some minor faults in the protocol were found and repaired. Describing the protocol as facts and rules also have other benefits i.e. leads to a process-able knowledge. This knowledge can be transferred as ontology between systems in KQML format. Since the Prolog language can increase its knowledge base every time, this method can also be used to learn an intelligent network.Keywords: Formal methods, MobiCast, Mobile Network, Multicast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380149 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.
Keywords: Differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625148 A Proposed Technique for Software Development Risks Identification by using FTA Model
Authors: Hatem A. Khater, A. Baith Mohamed, Sara M. Kamel
Abstract:
Software Development Risks Identification (SDRI), using Fault Tree Analysis (FTA), is a proposed technique to identify not only the risk factors but also the causes of the appearance of the risk factors in software development life cycle. The method is based on analyzing the probable causes of software development failures before they become problems and adversely affect a project. It uses Fault tree analysis (FTA) to determine the probability of a particular system level failures that are defined by A Taxonomy for Sources of Software Development Risk to deduce failure analysis in which an undesired state of a system by using Boolean logic to combine a series of lower-level events. The major purpose of this paper is to use the probabilistic calculations of Fault Tree Analysis approach to determine all possible causes that lead to software development risk occurrenceKeywords: Software Development Risks Identification (SDRI), Fault Tree Analysis (FTA), Taxonomy for Software Development Risks (TSDR), Probabilistic Risk Assessment (PRA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217147 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375146 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor
Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang
Abstract:
A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.
Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018145 An Intensional Conceptualization Model for Ontology-Based Semantic Integration
Authors: Fateh Adhnouss, Husam El-Asfour, Kenneth McIsaac, Abdul Mutalib Wahaishi, Idris El-Feghia
Abstract:
Conceptualization is an essential component of semantic ontology-based approaches. There have been several approaches that rely on extensional structure and extensional reduction structure in order to construct conceptualization. In this paper, several limitations are highlighted relating to their applicability to the construction of conceptualizations in dynamic and open environments. These limitations arise from a number of strong assumptions that do not apply to such environments. An intensional structure is strongly argued to be a natural and adequate modeling approach. This paper presents a conceptualization structure based on property, relations, and propositions theory (PRP) to the model ontology that is suitable for open environments. The model extends the First-Order Logic (FOL) notation and defines the formal representation that enables interoperability between software systems and supports semantic integration for software systems in open, dynamic environments.
Keywords: Conceptualization, ontology, extensional structure, intensional structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426144 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061143 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740142 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles
Authors: Seyed Mehran Kazemi, Bahare Fatemi
Abstract:
Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.
Keywords: Genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3771141 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.
Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026140 Combing LCIA and Fuzzy Risk Assessment for Environmental Impact Assessment
Authors: Kevin Fong-Rey Liu, Cheng-Wu Chen, Ken Yeh, Han-Hsi Liang
Abstract:
Environmental impact assessment (EIA) is a procedure tool of environmental management for identifying, predicting, evaluating and mitigating the adverse effects of development proposals. EIA reports usually analyze how the amounts or concentrations of pollutants obey the relevant standards. Actually, many analytical tools can deepen the analysis of environmental impacts in EIA reports, such as life cycle assessment (LCA) and environmental risk assessment (ERA). Life cycle impact assessment (LCIA) is one of steps in LCA to introduce the causal relationships among environmental hazards and damage. Incorporating the LCIA concept into ERA as an integrated tool for EIA can extend the focus of the regulatory compliance of environmental impacts to determine of the significance of environmental impacts. Sometimes, when using integrated tools, it is necessary to consider fuzzy situations due to insufficient information; therefore, ERA should be generalized to fuzzy risk assessment (FRA). Finally, the use of the proposed methodology is demonstrated through the study case of the expansion plan of the world-s largest plastics processing factory.
Keywords: Fuzzy risk analysis, life cycle impact assessment, fuzzy logic, environmental impact assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919