Search results for: Artificial Life
1806 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.
Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011805 Appraisal of Methods for Identifying, Mapping, and Modelling of Fluvial Erosion in a Mining Environment
Authors: F. F. Howard, I. Yakubu, C. B. Boye, J. S. Y. Kuma
Abstract:
Natural and human activities, such as mining operations, expose the natural soil to adverse environmental conditions, leading to contamination of soil, groundwater, and surface water, which has negative effects on humans, flora, and fauna. Bare or partly exposed soil is most liable to fluvial erosion. This paper enumerates various methods used to identify, map, and model fluvial erosion in a mining environment. Classical, Artificial Intelligence (AI), and GIS methods have been reviewed. One of the many classical methods used to estimate river erosion is the Revised Universal Soil Loss Equation (RUSLE) model. The RUSLE model is easy to use. Its reliance on empirical relationships that may not always be applicable to specific circumstances or locations is a flaw. Other classical models for estimating fluvial erosion are the Soil and Water Assessment Tool (SWAT) and the Universal Soil Loss Equation (USLE). These models offer a more complete understanding of the underlying physical processes and encompass a wider range of situations. Although more difficult to utilise, they depend on the availability and dependability of input data for correctness. AI can help deal with multivariate and complex difficulties and predict soil loss with higher accuracy than traditional methods, and also be used to build unique models for identifying degraded areas. AI techniques have become popular as an alternative predictor for degraded environments. However, this research proposed a hybrid of classical, AI, and GIS methods for efficient and effective modelling of fluvial erosion.
Keywords: Fluvial erosion, classical methods, Artificial Intelligence, Geographic Information System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851804 The Strange Relationship between Literacy and Well-Being: The Results of an International Survey with Special Focus on Italy
Authors: Federica Cornali
Abstract:
Does education matter to the quality of our life? The results of extensive studies offer an affirmative answer to this question: high education levels are positively associated with higher income, with more highly qualified professions, with lower risk of unemployment, with better physical health and also, it is said, with more happiness. However, exploring these relationships is far from straightforward. Aside from educational credentials, what properties distinguish functionally literate individuals? How can their personal level of satisfaction be measured? What are the social mechanisms whereby education affects well-being?Using a literacy index and several measures for well-being developed by secondary analysis of the Adult Literacy and Life Skills Survey database, this investigation examined the relationship between literacy skills and subjective wellbeing in several OECD (Organisation for Economic Co-operation and Development) countries. Special attention was been addressed to Italy, and in particular to two regions representing territorial differences in this country: Piedmont and Campania.
Keywords: Cultural Divide, Literacy Index, Life Satisfaction, Subjective Well-being Index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33071803 Well-Being in Adolescence: Fitting Measurement Model
Authors: Azlina Abu Bakar, Abdul Fatah Wan Sidek
Abstract:
Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.Keywords: Adolescence, Structural Equation Modeling, Sustainable Development, Well-Being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30771802 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531801 Welfare State and Income Distribution to School-Age Children
Authors: Kanyarat Bussaban, Siriporn Poolsuwan
Abstract:
This study is conducted with the objective to prove how the distorted distribution of welfare affects the quality of school-age children lives differently in the case ofan urban community in Bangkok. 334 samples are households from Suan Oi and Ratchapatubtim communities. The study of sample communities found the difference between two communityareasthatare close. The people of Suan Oi community are economically better off people than the people of the Ratchapatubtim community. They share the benefits of using most services except the welfare of a child’s education.The resulting analysis of the variability in quality of life of the school age children indicate that heads of the households are women looking for quality of life benefits when the compulsory school age is less.A study of the two communities suggests that the inequality in incomedistribution currently affects the quality of life of school-age children.
Keywords: Inequality, Income distribution, Quality of school-age children lives, Welfare state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091800 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks
Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik
Abstract:
This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21851799 Factors of Vocational Identity for Social Welfare University Students in Japan
Authors: J. Sakano, Y. Yajima, W. Ono, Y. Yamazaki, S. Sasahara, Y. Tomotsune, Y. Ohi, S. Suzuki, A. Seki, I. Matsuzaki
Abstract:
The study aimed to verify a hypothesis that a sense of fulfillment in student life and perceived stress in training in the facilities could affect vocational identity among social welfare university students, in order to acquire implications for enhancing the vocational consciousness. A questionnaire survey was conducted with 388 third- and fourth-year students of training course for certified social workers in three universities in A prefecture in Japan. The questionnaire was returned by 338 students, and 288 responses (85.2%) were valid and used for the analysis. As a SEM result, the hypothesized model proved to be fit to the data. Path coefficient of sense of fulfillment of student life to vocational identity was statistically positive. Path coefficient of training stress to vocational identity was statistically negative.Keywords: Training stress, Physical health, Sense of fulfillment of student life, structural equation modeling (SEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921798 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10981797 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.
Keywords: Accelerated life test, inverse power law, lithium ion battery, reliability evaluation, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8311796 Predicting the Life Cycle of Complex Technical Systems (CTS)
Authors: Khalil A. Yaghi, Samer Barakat
Abstract:
Complex systems are composed of several plain interacting independent entities. Interaction between these entities creates a unified behavior at the global level that cannot be predicted by examining the behavior of any single individual component of the system. In this paper we consider a welded frame of an automobile trailer as a real example of Complex Technical Systems, The purpose of this paper is to introduce a Statistical method for predicting the life cycle of complex technical systems. To organize gathering of primary data for modeling the life cycle of complex technical systems an “Automobile Trailer Frame" were used as a prototype in this research. The prototype represents a welded structure of several pieces. Both information flows underwent a computerized analysis and classification for the acquisition of final results to reach final recommendations for improving the trailers structure and their operational conditions.
Keywords: Complex Technical System (CTS), AutomobileTrailer Frame, Automobile Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12331795 Mucosal- Submucosal Changes in Rabbit Duodenum during Development
Authors: Elnasharty M. A., Abou-Ghanema I. I., Sayed-Ahmed A., A. Abo Elnour
Abstract:
The sequential morphologic changes of rabbit duodenal mucosa-submucosa were studied from primodial stage to birth in 15 fetuses and during the early days of life in 21 rabbit newborns till maturity using light, scanning and transmission electron microscopy. Fetal rabbit duodenum develops from a simple tube of stratified epithelium to a tube containing villus and intervillus regions of simple columnar epithelium. By day 21 of gestation, the first rudimentary villi were appeared and by day 24 the first true villi were appeared. The Crypts of Lieberkuhn did not appear until birth. By the first day of postnatal life the duodenal glands appeared. The histological maturity of the rabbit small intestine occurred one month after birth. In conclusion, at all stages, the sequential morphologic changes of the rabbit small intestine developed to meet the structural and physiological demands during the fetal stage to be prepared to extra uterine life.
Keywords: Duodenum, mucosa, submucosa, morphogenesis, rabbit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24061794 Media Pedagogy - The Medium is the Message
Authors: Syed Sultan Ahmed
Abstract:
The current education system in India is adept in equipping and assessing the scholastic development of children. However, there is an immediate need to strengthen co-scholastic areas like life-skills, values and attitudes to equip students to face real life challenges. Audio-visual technology and their respective media can make a significant contribution to a value based learning curriculum. Thus, co-scholastic skills need to be effectively nurtured by a medium that is entertaining and impactful. Films in general have a tremendous impact in our society. Films with a positive message make a formidable learning experience that can influence and inspire generations of learners. Leveraging on this powerful medium, EduMedia India Pvt. Ltd. has introduced School Cinema a well researched film-based learning module supported by a fun and exciting workbook, designed to introduce and reaffirm life-skills and values to children, thereby having a positive influence on their attitudes.Keywords: Co-Scholastics, Entertaining, Educative, Holistic- Development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16771793 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case
Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa Rodríguez
Abstract:
Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67%. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85%, 59%, 87%, and 29%, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09% for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determines the sustainability of the process.
Keywords: Exergy analysis, Life Cycle Assessment, LCA, renewability, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4631792 Forecasting Stock Price Manipulation in Capital Market
Authors: F. Rahnamay Roodposhti, M. Falah Shams, H. Kordlouie
Abstract:
The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.Keywords: Price Manipulation, Liquidity, Size of Company, Floating Stock, Information Clarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28531791 A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion
Authors: Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy
Abstract:
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.Keywords: Artificial Neural Network, Biomimetic Microrobots, Flagellar Propulsion, Swimming Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19101790 Personalized Applications for Advanced Healthcare through AI-ML and Blockchain
Authors: Anuja Vyas, Aikel Indurkhya, Hari Krishna Garg
Abstract:
Nearly 25 years have passed since the landmark publication of the Human Genome Project, yet scientists have only begun to scratch the surface of its potential benefits. To bridge this gap, a personalized genomic application has been envisioned as a transformative tool accessible to people worldwide. This innovative solution proposes an integrated framework combining blockchain technology, genome-specific applications, and data compression techniques, ensuring operations to be swift, secure, transparent, and space-efficient. The software harnesses advanced Artificial Intelligence and Machine Learning methodologies, such as neural networks, evaluation matrices, fuzzy logic, and expert systems, to analyze individual genomic data. It generates personalized reports by comparing a user's genome with a reference genome, highlighting significant differences. Blockchain technology, with its inherent security, encryption, and immutability features, is leveraged for robust data transport and storage. In addition, a 'Data Abbreviation' technique ensures that genetic data and reports occupy minimal space. This integrated approach promises to be a significant leap forward, potentially transforming human health and well-being on a global scale.
Keywords: Artificial intelligence in genomics, blockchain technology, data abbreviation, data compression, data security in genomics, data storage, expert systems, fuzzy logic, genome applications, genomic data analysis, human genome project, neural networks, personalized genomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391789 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis
Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha
Abstract:
Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.
Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8211788 Simple Agents Benefit Only from Simple Brains
Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde
Abstract:
In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.
Keywords: Neural network, probabilistic control, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14301787 Millennials' Career Expectations: Exploring Attitudes and Individual Differences
Authors: Lovorka Galetić, Maja Klindžić, Ivana Načinović Braje
Abstract:
Generation Y individuals or Millennials are known for their unique views, work values and motivational needs which implies that, in order to attract and retain those individuals, activities in the area of career management should be given special attention by HRM managers. After a theoretical background on Millennials’ life and work attitudes, an empirical research on career preferences of Millennials in Croatia was described. Empirical research was conducted among 249 members of generation Y. The data analysis revealed that respondents generally perceive promotion opportunities as the most important career aspect; however, job security and work-life balance are almost as important. Furthermore, it was shown that Generation Y is not necessarily a homogenous group. More precisely, women assign greater importance than men to work-life balance and job security. Therefore, HRM managers should adapt career planning activities not only with respect to generational preferences, but individual characteristics as well.Keywords: Career, individual differences, millennials, work values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20121786 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651785 Multi-Objective Cellular Manufacturing System under Machines with Different Life-Cycle using Genetic Algorithm
Authors: N. Javadian, J. Rezaeian, Y. Maali
Abstract:
In this paper a multi-objective nonlinear programming model of cellular manufacturing system is presented which minimize the intercell movements and maximize the sum of reliability of cells. We present a genetic approach for finding efficient solutions to the problem of cell formation for products having multiple routings. These methods find the non-dominated solutions and according to decision makers prefer, the best solution will be chosen.Keywords: Cellular Manufacturing, Genetic Algorithm, Multiobjective, Life-Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441784 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981783 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.
Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281782 Investigation of Public Perception of Air Pollution and Life Quality in Tehran
Authors: R. Karami, A. Gharaei
Abstract:
This study was undertaken at four different sites (north polluted, south polluted, south healthy and north healthy) in Tehran, in order to examine whether there was a relationship between publicly available air quality data and the public’s perception of air quality and to suggest some guidelines for reducing air pollution. A total of 200 people were accidentally filled out the research questionnaires at mentioned sites and air quality data were obtained simultaneously from the Air Quality Control Department. Data was analyzed in Excel and SPSS software’s. Clean air and job security were of great importance to people comparing to other pleasant aspect of life. Also air pollution and serious diseases were the most important of people concerns. Street monitors and news paper services on air quality were little used by the public as a means of obtaining information on air pollution. Using public transportation and avoiding inevitable journeys are the most important ways for reducing air pollution. The results reveal that the public’s perception of air quality is not a reliable indicator of the actual levels of air pollution.Keywords: Air pollution, Quality of life, Opinion poll, Public participation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23451781 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931780 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites
Authors: Pasquale Verde, Giuseppe Lamanna
Abstract:
A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.
Keywords: Fatigue life, strength, composites, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891779 Applying Case-Based Reasoning in Supporting Strategy Decisions
Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami
Abstract:
Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.
Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21741778 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling
Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali
Abstract:
This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.Keywords: Laser-sintered material, tool life, wear mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881777 New Product Development Process on High-Tech Innovation Life Cycle
Authors: Gonçalo G. Aleixo, Alexandra B. Tenera
Abstract:
This work will provide a new perspective of exploring innovation thematic. It will reveal that radical and incremental innovations are complementary during the innovation life cycle and accomplished through distinct ways of developing new products. Each new product development process will be constructed according to the nature of each innovation and the state of the product development. This paper proposes the inclusion of the organizational function areas that influence new product's development on the new product development process.
Keywords: Cross-functional, Incremental Innovation, New Product development Process, Radical Innovation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3843