Search results for: Advanced EncryptionStandard (AES)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 574

Search results for: Advanced EncryptionStandard (AES)

4 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: Electric power consumption, LED color, LED lighting, plant factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
3 Relationship between Hepatokines and Insulin Resistance in Childhood Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Childhood obesity is an important clinical problem, because it may lead to chronic diseases during the adulthood period of the individual. Obesity is a metabolic disease associated with low-grade inflammation. The liver occurs at the center of metabolic pathways. Adropin, fibroblast growth factor-21 (FGF-21) and fetuin A are hepatokines. Due to the immense participation of the liver in glucose metabolism, these liver derived factors may be associated with insulin resistance (IR), which is a phenomenon discussed within the scope of obesity problems. The aim of this study is to determine the concentrations of adropin, FGF-21 and fetuin A in childhood obesity, to point out possible differences between the obesity groups and to investigate possible associations among these three hepatokines in obese and morbid obese children. A total of 132 children were included in the study. Two obese groups were constituted. The groups were matched in terms of mean±SD values of ages. Body mass index values of the obese and morbid obese groups were 25.0±3.5 kg/m2 and 29.8±5.7 kg/m2, respectively. Anthropometric measurements including waist circumference, hip circumference, head circumference, and neck circumference were recorded. Informed consent forms were taken from the parents of the participants and the Ethics Committee of the institution approved the study protocol. Blood samples were obtained after an overnight fasting. Routine biochemical tests including glucose- and lipid-related parameters were performed. Concentrations of the hepatokines (adropin, FGF-21, fetuin A) were determined by enzyme-linked immunosorbent assay. Insulin resistance indices such as homeostasis model assessment for IR (HOMA-IR), alanine transaminase-to aspartate transaminase ratio (ALT/AST), diagnostic obesity notation model assessment laboratory index, diagnostic obesity notation model assessment metabolic syndrome index as well as obesity indices such as diagnostic obesity notation model assessment-II index, and fat mass index were calculated using the previously derived formulas. Statistical evaluation of the study data as well as findings of the study were performed by SPSS for Windows. Statistical difference was accepted significant when p < 0.05. Statistically significant differences were found for insulin, triglyceride, high density lipoprotein cholesterol levels of the groups. A significant increase was observed for FGF-21 concentrations in the morbid obese group. Higher adropin and fetuin A concentrations were observed in the same group in comparison with the values detected in the obese group (p > 0.05). There was no statistically significant difference between the ALT/AST values of the groups. In all of the remaining IR and obesity indices, significantly increased values were calculated for morbid obese children. Significant correlations were detected between HOMA-IR and each of the hepatokines. The highest one was the association with fetuin A (r = 0.373, p = 0.001). In conclusion, increased levels observed in adropin, FGF-21 and fetuin A have shown that these hepatokines possess increasing potential going from the obese to morbid obese state. Out of the correlations found with IR index, the most affected hepatokine was fetuin A, the parameter possibly used as the indicator of the advanced obesity stage.

Keywords: adropin, fetuin A, fibroblast growth factor-21, insulin resistance, pediatric obesity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
2 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, engineering topology, photonic system molecular structure, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 429
1 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.

Keywords: Heterophony, modalism, serialism, synchrony, syntax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696