Search results for: Active Network
3062 Active Vibration Control of Passenger Seat with HFPIDCR Controlled Suspension Alternatives
Authors: Devdutt, M. L. Aggarwal
Abstract:
In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.
Keywords: Active suspension system, HFPIDCR controller, passenger ride comfort, quarter car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13063061 A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks
Authors: F. O. Aron, T. O. Olwal, A. Kurien, M. O. Odhiambo
Abstract:
A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.Keywords: Topology Control, Wireless Mesh Networks, Backbone, Energy Efficiency, Localized Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14003060 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25933059 Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area
Authors: Siska Soesanti, Norihiro Nakai
Abstract:
Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.
Keywords: City center, commercial area, space syntax, street network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18273058 A Fair Non-transfer Exchange Protocol
Authors: Cheng-Chi Lee, Min-Shiang Hwang, Shu-Yin Hsiao
Abstract:
Network exchange is now widely used. However, it still cannot avoid the problems evolving from network exchange. For example. A buyer may not receive the order even if he/she makes the payment. For another example, the seller possibly get nothing even when the merchandise is sent. Some studies about the fair exchange have proposed protocols for the design of efficiency and exploited the signature property to specify that two parties agree on the exchange. The information about purchased item and price are disclosed in this way. This paper proposes a new fair network payment protocol with off-line trusted third party. The proposed protocol can protect the buyers- purchase message from being traced. In addition, the proposed protocol can meet the proposed requirements. The most significant feature is Non-transfer property we achieved.Keywords: E-commerce, digital signature, fair exchange, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13543057 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients
Authors: Zarita Zainuddin, Ong Pauline, C. Ardil
Abstract:
Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29983056 Traffic Behaviour of VoIP in a Simulated Access Network
Authors: Jishu Das Gupta, Srecko Howard, Angela Howard
Abstract:
Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.Keywords: Codec, DiffServ, Droptail, RED, VOIP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15993055 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.
Keywords: Multi-agent System, Robust Stabilization, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18793054 Distributed Self-Healing Protocol for Unattended Wireless Sensor Network
Authors: E. Golden Julie, E. Sahaya Rose Vigita, S. Tamil Selvi
Abstract:
Wireless sensor network is vulnerable to a wide range of attacks. Recover secrecy after compromise, to develop technique that can detect intrusions and able to resilient networks that isolates the point(s) of intrusion while maintaining network connectivity for other legitimate users. To define new security metrics to evaluate collaborative intrusion resilience protocol, by leveraging the sensor mobility that allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion using extensive simulations support our findings.
Keywords: WSN security, intrusion resilience, compromised sensors, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17643053 Dynamics Characterizations of Dielectric Electro-Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.
Keywords: Dielectric Electro-active Polymer, Pull Actuator, Static, Dynamic, Electromechanical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21123052 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive
Authors: M. Zerikat, M. Bendjebbar, N. Benouzza
Abstract:
In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.
Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24693051 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier
Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic
Abstract:
In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.
Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19843050 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9563049 Intelligent Control and Modelling of a Micro Robot for In-pipe Application
Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour
Abstract:
In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17273048 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter
Authors: Kavala Kiran Kumar, R. Govardhana Rao
Abstract:
Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25383047 Deactivation of Cu - Cr/γ-alumina Catalysts for Combustion of Exhaust Gases
Authors: Krasimir Ivanov, Dimitar Dimitrov, Boyan Boyanov
Abstract:
The paper relates to a catalyst, comprising copperchromium spinel, coated on carrier γ-Al2O3. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. It was found that the activity of carbon monoxide, DME, formaldehyde and methanol oxidation reaches a maximum at an active component content of 20 – 30 wt. %. Temperature calcination at 500oC seems to be optimal for the γ– alumina supported CuO-Cr2O3 catalysts for CO, DME, formaldehyde and methanol oxidation. A three months industrial experiment was carried out to elucidate the changes in the catalyst composition during industrial exploitation of the catalyst and the main reasons for catalyst deactivation. It was concluded that the CuO–Cr2O3/γ–alumina supported catalysts have enhanced activity toward CO, DME, formaldehyde and methanol oxidation and that these catalysts are suitable for industrial application. The main reason for catalyst deactivation seems to be the deposition of iron and molybdenum, coming from the main reactor, on the active component surface.Keywords: catalyst deactivation, CuO-Cr2O3 catalysts, deep oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45163046 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy
Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang
Abstract:
To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.
Keywords: NPC, ANN, logistic regression, xerostomia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443045 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment
Authors: M. Salman, B. Budiardjo, K. Ramli
Abstract:
Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39473044 Automatic Segmentation of Retina Vessels by Using Zhang Method
Authors: Ehsan Saghapour, Somayeh Zandian
Abstract:
Image segmentation is an important step in image processing. Major developments in medical imaging allow physicians to use potent and non-invasive methods in order to evaluate structures, performance and to diagnose human diseases. In this study, an active contour was used to extract vessel networks from color retina images. Automatic analysis of retina vessels facilitates calculation of arterial index which is required to diagnose some certain retinopathies.Keywords: Active contour, retinal vessel segmentation, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23823043 Hand Gesture Recognition: Sign to Voice System (S2V)
Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo
Abstract:
Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18623042 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chiawchan
Abstract:
This study found that most corporate personnel are using social media to communicate with colleagues to make the process of working more efficient. Complete satisfaction occurred on the use of security within the University’s computer network. The social network usage for communication, collaboration, entertainment and demonstrating concerns accounted for fifty percent of variance to predict interpersonal relationships of corporate personnel. This evaluation on the effectiveness of social networking involved 213 corporate personnel’s. The data was collected by questionnaires. This data was analyzed by using percentage, mean, and standard deviation. The results from the analysis and the effectiveness of using online social networks were derived from the attitude of private users and safety data within the security system. The results showed that the effectiveness on the use of an online social network for corporate personnel of Suan Sunandha Rajabhat University was specifically at a good level, and the overall effects of each aspect was (Ẋ=3.11).Keywords: Behaviors, Social Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14013041 Fuzzy Logic Based Coordinated Voltage Control for Distribution Network with Distributed Generations
Authors: T. Juhana Hashim, A. Mohamed
Abstract:
This paper discusses the implementation of a fuzzy logic based coordinated voltage control for a distribution system connected with distributed generations (DGs). The connection of DGs has created a challenge for the distribution network operators to keep the voltage in the system within its acceptable limits. Intelligent centralized or coordinated voltage control schemes have proven to be more reliable due to its ability to provide more control and coordination with the communication with other network devices. In this work, voltage control using fuzzy logic by coordinating three methods of control, power factor control, on load tap changer and generation curtailment is implemented on a distribution network test system. The results show that the fuzzy logic based coordination is able to keep the voltage within its allowable limits.
Keywords: Coordinated control, Distributed generation, Fuzzy logic, Voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30353040 Multimode Dynamics of the Beijing Road Traffic System
Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun
Abstract:
The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phasesKeywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15413039 B-VIS Service-oriented Middleware for RFID Sensor Network
Authors: Wiroon Sriborrirux, Sorakrai Kraipui, Nakorn Indra-Payoong
Abstract:
One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.Keywords: Middleware, RFID sensor network, Cooperativevehicle-infrastructure system, Enterprise Java Bean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15413038 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand
Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh
Abstract:
Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26893037 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.
Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19473036 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: Distillation, machine learning, neural networks, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7383035 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25403034 An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool
Authors: Ghassan A. Abed, Mahamod Ismail, Samir I. Badrawi, Bayan M. Sabbar
Abstract:
Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.
Keywords: 3GPP, LTE, LTE-Advanced, NS-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24353033 Spacecraft Neural Network Control System Design using FPGA
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.
Keywords: Spacecraft, neural network, FPGA, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016