Search results for: recommendation systems.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4474

Search results for: recommendation systems.

4444 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
4443 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
4442 Place Recommendation Using Location-Based Services and Real-time Social Network Data

Authors: Kanda Runapongsa Saikaew, Patcharaporn Jiranuwattanawong, Patinya Taearak

Abstract:

Currently, there is excessively growing information about places on Facebook, which is the largest social network but such information is not explicitly organized and ranked. Therefore users cannot exploit such data to recommend places conveniently and quickly. This paper proposes a Facebook application and an Android application that recommend places based on the number of check-ins of those places, the distance of those places from the current location, the number of people who like Facebook page of those places, and the number of talking about of those places. Related Facebook data is gathered via Facebook API requests. The experimental results of the developed applications show that the applications can recommend places and rank interesting places from the most to the least. We have found that the average satisfied score of the proposed Facebook application is 4.8 out of 5. The users’ satisfaction can increase by adding the app features that support personalization in terms of interests and preferences.

Keywords: Mobile computing, location-based services, recommendation system, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
4441 Culturally Enhanced Collaborative Filtering

Authors: Mahboobe Zardosht, Nasser Ghasem-Aghaee

Abstract:

We propose an enhanced collaborative filtering method using Hofstede-s cultural dimensions, calculated for 111 countries. We employ 4 of these dimensions, which are correlated to the costumers- buying behavior, in order to detect users- preferences for items. In addition, several advantages of this method demonstrated for data sparseness and cold-start users, which are important challenges in collaborative filtering. We present experiments using a real dataset, Book Crossing Dataset. Experimental results shows that the proposed algorithm provide significant advantages in terms of improving recommendation quality.

Keywords: Collaborative filtering, Cross-cultural, E-commerce, Recommender systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
4440 Linking OpenCourseWares and Open Education Resources: Creating an Effective Search and Recommendation System

Authors: Brett E. Shelton, Joel Duffin, Yuxuan Wang, Justin Ball

Abstract:

With a growing number of digital libraries and other open education repositories being made available throughout the world, effective search and retrieval tools are necessary to access the desired materials that surpass the effectiveness of traditional, allinclusive search engines. This paper discusses the design and use of Folksemantic, a platform that integrates OpenCourseWare search, Open Educational Resource recommendations, and social network functionality into a single open source project. The paper describes how the system was originally envisioned, its goals for users, and data that provides insight into how it is actually being used. Data sources include website click-through data, query logs, web server log files and user account data. Based on a descriptive analysis of its current use, modifications to the platform's design are recommended to better address goals of the system, along with recommendations for additional phases of research.

Keywords: Digital libraries, open education, recommendation system, social networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
4439 E-Appointment Scheduling (EAS)

Authors: Noraziah Ahmad, Roslina Mohd Sidek, Mohd Affendy Omardin

Abstract:

E-Appointment Scheduling (EAS) has been developed to handle appointment for UMP students, lecturers in Faculty of Computer Systems & Software Engineering (FCSSE) and Student Medical Center. The schedules are based on the timetable and university activities. Constraints Logic Programming (CLP) has been implemented to solve the scheduling problems by giving recommendation to the users in part of determining any available slots from the lecturers and doctors- timetable. By using this system, we can avoid wasting time and cost because this application will set an appointment by auto-generated. In addition, this system can be an alternative to the lecturers and doctors to make decisions whether to approve or reject the appointments.

Keywords: EAS, Constraint Logic Programming, PHP, Apache.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
4438 Architecture of Large-Scale Systems

Authors: Arne Koschel, Irina Astrova, Elena Deutschkämer, Jacob Ester, Johannes Feldmann

Abstract:

In this paper various techniques in relation to large-scale systems are presented. At first, explanation of large-scale systems and differences from traditional systems are given. Next, possible specifications and requirements on hardware and software are listed. Finally, examples of large-scale systems are presented.

Keywords: Distributed file systems, cashing, large scale systems, MapReduce algorithm, NoSQL databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3057
4437 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning

Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang

Abstract:

Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
4436 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System

Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi

Abstract:

Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.

Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
4435 CEO Duality and Firm Performance: An Integration of Institutional Perceptive with Agency Theory

Authors: A. Ujunwa, P. O. Salami, A. H. Umar

Abstract:

The recommendation of the committee on corporate governance for public companies in Nigeria, that the position of the CEO be separated from board chair has generated serious debate among scholars and practitioners. They have questioned the appropriateness of implementing corporate governance model that is based on Anglo-Saxon agency problem characterized by dispersed ownership structure; where markets for corporate control, legal regulation, and contractual incentives are the key governance mechanisms. This paper strives to resolve the argument by adopting an institutional perspective in testing the agency theory on board duality. The study developed a theoretical and empirical model to better understand how ownership structure influences agency conflict and how such affects firm performance. Hence, the study examines the relationship between CEO duality and firm performance using two institutional ownership structures – dispersed ownership and concentrated ownership structures. The empirical results show that CEO duality is negatively correlated with firm performance in Nigeria irrespective of the firm-s ownership structure. The findings give credence to the recommendation of the Peterside Commission on the need to separate the position of CEO from board chair.

Keywords: Corporate Governance, CEO-Duality, Firm Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3979
4434 Visualizing Imaging Pathways after Anatomy-Specific Follow-Up Imaging Recommendations

Authors: Thusitha Mabotuwana, Christopher S. Hall

Abstract:

Radiologists routinely make follow-up imaging recommendations, usually based on established clinical practice guidelines, such as the Fleischner Society guidelines for managing lung nodules. In order to ensure optimal care, it is important to make guideline-compliant recommendations, and also for patients to follow-up on these imaging recommendations in a timely manner. However, determining such compliance rates after a specific finding has been observed usually requires many time-consuming manual steps. To address some of these limitations with current approaches, in this paper we discuss a methodology to automatically detect finding-specific follow-up recommendations from radiology reports and create a visualization for relevant subsequent exams showing the modality transitions. Nearly 5% of patients who had a lung related follow-up recommendation continued to have at least eight subsequent outpatient CT exams during a seven year period following the recommendation. Radiologist and section chiefs can use the proposed tool to better understand how a specific patient population is being managed, identify possible deviations from established guideline recommendations and have a patient-specific graphical representation of the imaging pathways for an abstract view of the overall treatment path thus far.

Keywords: Follow-up recommendations, care pathways, imaging pathway visualization, follow-up tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
4433 Semantically Enriched Web Usage Mining for Personalization

Authors: Suresh Shirgave, Prakash Kulkarni, José Borges

Abstract:

The continuous growth in the size of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills and more sophisticated tools to help the Web user to find the desired information. In order to make Web more user friendly, it is necessary to provide personalized services and recommendations to the Web user. For discovering interesting and frequent navigation patterns from Web server logs many Web usage mining techniques have been applied. The recommendation accuracy of usage based techniques can be improved by integrating Web site content and site structure in the personalization process.

Herein, we propose semantically enriched Web Usage Mining method for Personalization (SWUMP), an extension to solely usage based technique. This approach is a combination of the fields of Web Usage Mining and Semantic Web. In the proposed method, we envisage enriching the undirected graph derived from usage data with rich semantic information extracted from the Web pages and the Web site structure. The experimental results show that the SWUMP generates accurate recommendations and is able to achieve 10-20% better accuracy than the solely usage based model. The SWUMP addresses the new item problem inherent to solely usage based techniques.

Keywords: Prediction, Recommendation, Semantic Web Usage Mining, Web Usage Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
4432 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Mandana Kariminejad, Ali Ghaffari

Abstract:

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
4431 A Recommender System Fusing Collaborative Filtering and User’s Review Mining

Authors: Seulbi Choi, Hyunchul Ahn

Abstract:

Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.

Keywords: Recommender system, collaborative filtering, text mining, review mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
4430 Intelligent Solutions for Umbrella Systems in Telecommunication Supervision Systems

Authors: K. P. Csányi, L. T. Kóczy, D. Tikk

Abstract:

This paper indicate the importance of telecommunications supervision systems (TSS), integrating heterogeneous TSS into single system thru umbrella systems, introduces the structure, features, requirements of TSS and TSS related intelligent solutions.

Keywords: Telecommunication, telecommunication supervisionsystems, umbrella systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
4429 Fractal Shapes Description with Parametric L-systems and Turtle Algebra

Authors: Ikbal Zammouri, Béchir Ayeb

Abstract:

In this paper, we propose a new method to describe fractal shapes using parametric l-systems. First we introduce scaling factors in the production rules of the parametric l-systems grammars. Then we decorticate these grammars with scaling factors using turtle algebra to show the mathematical relation between l-systems and iterated function systems (IFS). We demonstrate that with specific values of the scaling factors, we find the exact relationship established by Prusinkiewicz and Hammel between l-systems and IFS.

Keywords: Fractal shapes, IFS, parametric l-systems, turtlealgebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
4428 Hybrid Modeling and Optimal Control of a Two-Tank System as a Switched System

Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh

Abstract:

In the past decade, because of wide applications of hybrid systems, many researchers have considered modeling and control of these systems. Since switching systems constitute an important class of hybrid systems, in this paper a method for optimal control of linear switching systems is described. The method is also applied on the two-tank system which is a much appropriate system to analyze different modeling and control techniques of hybrid systems. Simulation results show that, in this method, the goals of control and also problem constraints can be satisfied by an appropriate selection of cost function.

Keywords: Hybrid systems, optimal control, switched systems, two-tank system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
4427 Using Critical Systems Thinking to Improve Student Performance in Networking

Authors: Albertus G. Joubert, Roelien Goede

Abstract:

This paper explores how Critical Systems Thinking and Action Research can be used to improve student performance in Networking. When describing a system from a systems thinking perspective, the following aspects can be identified: the total system performance, the systems environment, the resources, the components and the management of the system. Following the history of system thinking we observe three emerged methodologies namely, hard systems, soft systems, and critical systems. This paper uses Critical Systems Thinking (CST) which describes systems in terms of contradictions and conflict. It demonstrates how CST can be used in an Action Research (AR) project to improve the performance of students. Intervention in terms of student assessment is discussed and the impact of the intervention is discussed.

Keywords: Action research, computer networks, critical systems thinking, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
4426 Agent-Based Modeling of Power Systems Infrastructure Cyber Security

Authors: Raman Paranjape

Abstract:

We present a new approach to evaluation of Cyber Security in Power Systems using the method of modeling the power systems Infrastructure using software agents. Interfaces between module and the home smart meter are recognized as the primary points of intrusion.

Keywords: Power Systems, Modeling and Simulation, Agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
4425 Improved Data Warehousing: Lessons Learnt from the Systems Approach

Authors: Roelien Goede

Abstract:

Data warehousing success is not high enough. User dissatisfaction and failure to adhere to time frames and budgets are too common. Most traditional information systems practices are rooted in hard systems thinking. Today, the great systems thinkers are forgotten by information systems developers. A data warehouse is still a system and it is worth investigating whether systems thinkers such as Churchman can enhance our practices today. This paper investigates data warehouse development practices from a systems thinking perspective. An empirical investigation is done in order to understand the everyday practices of data warehousing professionals from a systems perspective. The paper presents a model for the application of Churchman-s systems approach in data warehouse development.

Keywords: Data warehouse development, Information systemsdevelopment, Interpretive case study, Systems thinking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
4424 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
4423 To Design Holistic Health Service Systems on the Internet

Authors: Åsa Smedberg

Abstract:

There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.

Keywords: Learning, Ask the Expert, online community, healthcare, holistic, overweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
4422 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources

Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan

Abstract:

This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.

Keywords: Model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
4421 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study

Authors: Mitchell J. McHugh, John J. Case

Abstract:

Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.

Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
4420 The Study on Migration Strategy of Legacy System

Authors: Chao Qi, Fuyang Peng, Bo Deng, Xiaoyan Su

Abstract:

In the upgrade process of enterprise information systems, whether new systems will be success and their development will be efficient, depends on how to deal with and utilize those legacy systems. We propose an evaluation system, which comprehensively describes the capacity of legacy information systems in five aspects. Then a practical legacy systems evaluation method is scripted. Base on the evaluation result, we put forward 4 kinds of migration strategy: eliminated, maintenance, modification, encapsulating. The methods and strategies play important roles in practice.

Keywords: Legacy Systems, Evaluation Method, Migration Strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
4419 DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems

Authors: Federico Cabitza, Bernardo Dal Seno

Abstract:

In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.

Keywords: Knowledge-Based Systems, Expert Systems, Distributed Inference Systems, Parallel Production Systems, Ambient Intelligence, Mobile Agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
4418 The Functionality and Usage of CRM Systems

Authors: Michael Torggler

Abstract:

Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.

Keywords: CRM systems, CRM system adoption, CRM system diffusion, CRM functionality, Market study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4049
4417 Synchronization of Non-Identical Chaotic Systems with Different Orders Based On Vector Norms Approach

Authors: Rihab Gam, Anis Sakly, Faouzi M'sahli

Abstract:

A new strategy of control is formulated for chaos synchronization of non-identical chaotic systems with different orders using the Borne and Gentina practical criterion associated with the Benrejeb canonical arrow form matrix, to drift the stability property of dynamic complex systems. The designed controller ensures that the state variables of controlled chaotic slave systems globally synchronize with the state variables of the master systems, respectively. Numerical simulations are performed to illustrate the efficiency of the proposed method.

Keywords: Synchronization, Non-identical chaotic systems, Different orders, Arrow form matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
4416 Application of Customer Relationship Management Systems in Business: Challenges and Opportunities

Authors: K. Liagkouras, K. Metaxiotis

Abstract:

Customer relationship management (CRM) systems in business are a reality of the contemporary business world for the last decade or so. Still, there are grey areas regarding the successful implementation and operation of CRM systems in business. This paper, through the systematic study of the CRM implementation paradigm, attempts to identify the most important challenges and opportunities that the CRM systems face in a rapidly changing business world.

Keywords: Customer Relationship Management, CRM, Business, Information Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4996
4415 PPP in Light Rail Transit Systems in Spain

Authors: S. Carpintero, R. Barcham

Abstract:

Light rail systems have proliferated in Spain in the last decade, following a tendency that is common not only in other European countries but also in other parts of the world. This paper reviews the benefits of light rail systems, both related to environmental issues and mobility issues. It analyses the evolution of light rail projects in Spain and shows that light rail systems in this country have evolved towards an extensive use of public-private partnerships. The analysis of the Spanish projects, however, does not contribute any conclusive evidence about whether public-private partnerships have been more efficient than publicly owned enterprises in building and operating light rail systems.

Keywords: Light rail systems, public-private partnerships, BOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276