Search results for: forecasting models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2650

Search results for: forecasting models

2620 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm

Authors: S. Esfandeh, M. Sedighizadeh

Abstract:

Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.

Keywords: Weather, Climate, PSO, Prediction, Meteorological

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2619 Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse

Authors: Meredith Stevenson, John E. Porter

Abstract:

Since the pioneering work of Zadeh, fuzzy set theory has been applied to a myriad of areas. Song and Chissom introduced the concept of fuzzy time series and applied some methods to the enrollments of the University of Alabama. In recent years, a number of techniques have been proposed for forecasting based on fuzzy set theory methods. These methods have either used enrollment numbers or differences of enrollments as the universe of discourse. We propose using the year to year percentage change as the universe of discourse. In this communication, the approach of Jilani, Burney, and Ardil is modified by using the year to year percentage change as the universe of discourse. We use enrollment figures for the University of Alabama to illustrate our proposed method. The proposed method results in better forecasting accuracy than existing models.

Keywords: Fuzzy forecasting, fuzzy time series, fuzzified enrollments, time-invariant model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
2618 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang

Abstract:

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.

Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2617 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215
2616 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
2615 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: Cross-validation, decision tree, lagged variables, short-term forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
2614 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering

Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida

Abstract:

In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.

Keywords: C-means clustering, Fuzzy time series, Multi-variate design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
2613 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.

The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
2612 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
2611 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
2610 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor

Authors: R. Mechgoug, A. Titaouine

Abstract:

Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.

Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
2609 Framework for Spare Inventory Management

Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany

Abstract:

Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.

Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6540
2608 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
2607 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
2606 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.

Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
2605 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Authors: Petar Halachev

Abstract:

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

Keywords: artificial neural network, balanced scorecard, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
2604 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Authors: Ilaria Lucrezia Amerise

Abstract:

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
2603 Application of Artificial Neural Networks for Temperature Forecasting

Authors: Mohsen Hayati, Zahra Mohebi

Abstract:

In this paper, the application of neural networks to study the design of short-term temperature forecasting (STTF) Systems for Kermanshah city, west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STTF systems is used. Our study based on MLP was trained and tested using ten years (1996-2006) meteorological data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STTF systems.

Keywords: Artificial neural networks, Forecasting, Weather, Multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318
2602 A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management

Authors: Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.

Keywords: Forecasting, Model predictive control, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
2601 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
2600 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
2599 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374
2598 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.

Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3754
2597 Fuzzy Ideology based Long Term Load Forecasting

Authors: Jagadish H. Pujar

Abstract:

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Keywords: Fuzzy Logic Control (FLC), Data DependantFactors(DDF), Model Dependent Factors(MDF), StatisticalError(SE), Short Term Load Forecasting (STLF), MiscellaneousError(ME).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
2596 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
2595 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas, the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself, implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: Energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
2594 The Link between Unemployment and Inflation Using Johansen’s Co-Integration Approach and Vector Error Correction Modelling

Authors: Sagaren Pillay

Abstract:

In this paper bi-annual time series data on unemployment rates (from the Labour Force Survey) are expanded to quarterly rates and linked to quarterly unemployment rates (from the Quarterly Labour Force Survey). The resultant linked series and the consumer price index (CPI) series are examined using Johansen’s cointegration approach and vector error correction modeling. The study finds that both the series are integrated of order one and are cointegrated. A statistically significant co-integrating relationship is found to exist between the time series of unemployment rates and the CPI. Given this significant relationship, the study models this relationship using Vector Error Correction Models (VECM), one with a restriction on the deterministic term and the other with no restriction.

A formal statistical confirmation of the existence of a unique linear and lagged relationship between inflation and unemployment for the period between September 2000 and June 2011 is presented. For the given period, the CPI was found to be an unbiased predictor of the unemployment rate. This relationship can be explored further for the development of appropriate forecasting models incorporating other study variables.

Keywords: Forecasting, lagged, linear, relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
2593 Forecasting Malaria Cases in Bujumbura

Authors: Hermenegilde Nkurunziza, Albrecht Gebhardt, Juergen Pilz

Abstract:

The focus in this work is to assess which method allows a better forecasting of malaria cases in Bujumbura ( Burundi) when taking into account association between climatic factors and the disease. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in Bujumbura are described and analyzed. We propose a hierarchical approach to achieve our objective. We first fit a Generalized Additive Model to malaria cases to obtain an accurate predictor, which is then used to predict future observations. Various well-known forecasting methods are compared leading to different results. Based on in-sample mean average percentage error (MAPE), the multiplicative exponential smoothing state space model with multiplicative error and seasonality performed better.

Keywords: Burundi, Forecasting, Malaria, Regressionmodel, State space model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2592 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region

Authors: Mohsen Hayati, Yazdan Shirvany

Abstract:

In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.

Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
2591 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979