Search results for: data modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8910

Search results for: data modeling

8880 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: Empirical model, modeling, OCC, rainfall-runoff relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
8879 Modeling of Crude Oil Blending via Discrete-Time Neural Networks

Authors: Xiaoou Li, Wen Yu

Abstract:

Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.

Keywords: Neural networks, modeling, stability, crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
8878 CFD Simulation of Condensing Vapor Bubble using VOF Model

Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park

Abstract:

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.

Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
8877 A Collaborative Framework for Visual Modeling on Web 2.0

Authors: Song Meng, Dianfu Ma, Yongwang Zhao, Jianxin Li

Abstract:

Cooperative visual modeling is more and more necessary in our complicated world. A collaborative environment which supports interactive operation and communication is required to increase work efficiency. We present a collaborative visual modeling framework which collaborative platform could be built on. On this platform, cooperation and communication is available for designers from different regions. This framework, which is different from other collaborative frameworks, contains a uniform message format, a message handling mechanism and other functions such as message pretreatment and Role-Communication-Token Access Control (RCTAC). We also show our implementation of this framework called Orchestra Designer, which support BPLE workflow modeling cooperatively online.

Keywords: colllaborative framework; visual modeling; message handling mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
8876 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation

Authors: Zoltan Theisz, Gergely Mezei

Abstract:

Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.

Keywords: Meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
8875 Modeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graph

Authors: Hidetoshi Nonaka

Abstract:

This paper presents an interactive modeling system of uniform polyhedra using the isomorphic graphs. Especially, Kepler-Poinsot solids are formed by modifications of dodecahedron and icosahedron.

Keywords: Kepler-Poinsot solid, Shape modeling, Polyhedralgraph, Graph drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
8874 Effects of Stream Tube Numbers on Flow and Sediments using GSTARS-3-A Case Study of the Karkheh Reservoir Dam in Western Dezful

Authors: M. H. Ayazi, M. Qamari, N.Hedayat, A. Rohani

Abstract:

Simulation of the flow and sedimentation process in the reservoir dams can be made by two methods of physical and mathematical modeling. The study area was within a region which ranged from the Jelogir hydrometric station to the Karkheh reservoir dam aimed at investigating the effects of stream tubes on the GSTARS-3 model behavior. The methodologies was to run the model based on 5 stream tubes in order to observe the influence of each scenario on longitudinal profiles, cross-section, flow velocity and bed load sediment size. Results further suggest that the use of two stream tubes or more which result in the semi-two-dimensional model will yield relatively closer results to the observational data than a singular stream tube modeling. Moreover, the results of modeling with three stream tubes shown to yield a relatively close results with the observational data. The overall conclusion of the paper is with applying various stream tubes; it would be possible to yield a significant influence on the modeling behavior Vis-a Vis the bed load sediment size.

Keywords: Karkheh, stream tubes, GSTARS-3 Model, Jelogir hydrometric station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
8873 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: Agent-oriented modeling, business Intelligence management, distributed data mining, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
8872 A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design

Authors: A. Retbi, M. Khalidi Idrissi, S. Bennani

Abstract:

The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.

Keywords: Educational modeling language, Domain Specific Modeling, authoring systems, learning scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
8871 Indexing and Searching of Image Data in Multimedia Databases Using Axial Projection

Authors: Khalid A. Kaabneh

Abstract:

This paper introduces and studies new indexing techniques for content-based queries in images databases. Indexing is the key to providing sophisticated, accurate and fast searches for queries in image data. This research describes a new indexing approach, which depends on linear modeling of signals, using bases for modeling. A basis is a set of chosen images, and modeling an image is a least-squares approximation of the image as a linear combination of the basis images. The coefficients of the basis images are taken together to serve as index for that image. The paper describes the implementation of the indexing scheme, and presents the findings of our extensive evaluation that was conducted to optimize (1) the choice of the basis matrix (B), and (2) the size of the index A (N). Furthermore, we compare the performance of our indexing scheme with other schemes. Our results show that our scheme has significantly higher performance.

Keywords: Axial Projection, images, indexing, multimedia database, searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
8870 Investigation of Tbilisi City Atmospheric Air Pollution with PM in Usual and Emergency Situations Using the Observational and Numerical Modeling Data

Authors: N. Gigauri, V. Kukhalashvili, V. Sesadze, A. Surmava, L. Intskirveli

Abstract:

Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.

Keywords: Air pollution, numerical modeling, PM2.5, PM10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
8869 A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data

Authors: Nam Lethanh, Bryan T. Adey

Abstract:

In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and modeled as a Markov processes. It is also assumed that condition data can be collected by visual inspections over time and represented continuously using an exponential distribution. The advantage of using such a model in decision making process is illustrated through an empirical study using real world data.

Keywords: Deterioration modeling, Exponential distribution, Hidden Markov model, Pavement management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
8868 Change Management in Business Process Modeling Based on Object Oriented Petri Net

Authors: Bassam Atieh Rajabi, Sai Peck Lee

Abstract:

Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.

Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
8867 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
8866 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: Early Warning System, Knowledge Management, Topic Modeling, Market Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
8865 Geometric Modeling of Illumination on the TFT-LCD Panel using Bezier Surface

Authors: Kyong-min Lee, Moon Soo Chang, PooGyeon Park

Abstract:

In this paper, we propose a geometric modeling of illumination on the patterned image containing etching transistor. This image is captured by a commercial camera during the inspection of a TFT-LCD panel. Inspection of defect is an important process in the production of LCD panel, but the regional difference in brightness, which has a negative effect on the inspection, is due to the uneven illumination environment. In order to solve this problem, we present a geometric modeling of illumination consisting of an interpolation using the least squares method and 3D modeling using bezier surface. Our computational time, by using the sampling method, is shorter than the previous methods. Moreover, it can be further used to correct brightness in every patterned image.

Keywords: Bezier, defect, geometric modeling, illumination, inspection, LCD, panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
8864 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: BIT, fault detection, fault isolation, testability modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
8863 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Forecasting, Gaussian process, modeling, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
8862 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
8861 Therapeutic Product Preparation Bioprocess Modeling

Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu

Abstract:

An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.

Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
8860 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches

Authors: Suhas K, Sripadaraja K

Abstract:

This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.

Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
8859 New Approach for the Modeling and the Implementation of the Object-Relational Databases

Authors: Amel Grissa-Touzi, Minyar Sassi

Abstract:

Conception is the primordial part in the realization of a computer system. Several tools have been used to help inventors to describe their software. These tools knew a big success in the relational databases domain since they permit to generate SQL script modeling the database from an Entity/Association model. However, with the evolution of the computer domain, the relational databases proved their limits and object-relational model became used more and more. Tools of present conception don't support all new concepts introduced by this model and the syntax of the SQL3 language. We propose in this paper a tool of help to the conception and implementation of object-relational databases called «NAVIGTOOLS" that allows the user to generate script modeling its database in SQL3 language. This tool bases itself on the Entity/Association and navigational model for modeling the object-relational databases.

Keywords: Abstract Data Table, Navigational model, Objectrelational databases, References.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
8858 Modeling of Heat and Mass Transfer in Soil Plant-Atmosphere. Influence of the Spatial Variability of Soil Hydrodynamic

Authors: Aouattou Nabila, Saighi Mohamed, Fekih Malika

Abstract:

The modeling of water transfer in the unsaturated zone uses techniques and methods of the soil physics to solve the Richards-s equation. However, there is a disaccord between the size of the measurements provided by the soil physics and the size of the fields of hydrological modeling problem, to which is added the strong spatial variability of soil hydraulic properties. The objective of this work was to develop a methodology to estimate the hydrodynamic parameters for modeling water transfers at different hydrological scales in the soil-plant atmosphere systems.

Keywords: Hydraulic properties, Modeling, Unsaturated zone, Transfer, Water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
8857 GODYS-PC: a Software Package for Modeling,Simulating and Analyzing Dynamic Systems

Authors: Jacek Kuraś, Jacek Lembas, Marek Skomorowski

Abstract:

In this paper, we introduce GODYS-PC software package for modeling, simulating and analyzing dynamic systems. To illustrate the use of GODYS-PC we present a few examples which concern modeling and simulating of engineering systems. In order to compare GODYS-PC with widely used in academia and industry Simulink®, the same examples are provided both in GODYS-PC and Simulink®.

Keywords: Modeling, simulating and analyzing dynamicsystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
8856 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
8855 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
8854 Zero Inflated Models for Overdispersed Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.

Keywords: Overdispersed count data, model selection methods, likelihood ratio, AIC, BIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532
8853 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Decision tree modeling, Forecasting, Humanitarian relief, emergency supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
8852 Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives

Authors: Tsuyoshi Okita

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
8851 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5685