Search results for: carbon stock
1032 Insertion of Thiazolidinediones into Carbon Nanotube
Authors: Behnoush Zare, Mojdeh Akhavan, Ahmad Reza Dehpour
Abstract:
In this study we investigate the insertion of pioglitazone, a Thiazolidinedione, into the two different sizes of Carbon nanotub. It was shown that the insertion of pioglitazone into the carbon nanotube in a water solute environment could be related to the diameter of the nanotube and in the flow of the waters via hydrophilic interactions. This encapsulated drug-carbon nanotube molecule can be further applicable in other investigations in target therapy with these agents regarding to reduce their potential toxic effects.Keywords: Carbon Nanotube, MD Simulation, Thiazolidinedions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18271031 An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market
Authors: Ioan Popa, Radu Lupu, Cristiana Tudor
Abstract:
In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.Keywords: Bucharest Stock Exchange, Fama-Macbeth methodology, systematic risk, non-linear risk-return dependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051030 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.
Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001029 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: Building stock energy modelling, energy-savings, archetype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7471028 Financial Ethics: A Review of 2010 Flash Crash
Authors: Omer Farooq, Salman Ahmed Khan, Sadaf Khalid
Abstract:
Modern day stock markets have almost entirely became automated. Even though it means increased profits for the investors by algorithms acting upon the slightest price change in order of microseconds, it also has given birth to many ethical dilemmas in the sense that slightest mistake can cause people to lose all of their livelihoods. This paper reviews one such event that happened on May 06, 2010 in which $1 trillion dollars disappeared from the Dow Jones Industrial Average. We are going to discuss its various aspects and the ethical dilemmas that have arisen due to it.
Keywords: Flash Crash, Market Crash, Stock Market, Stock Market Crash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571027 Exchange Traded Products on the Warsaw Stock Exchange
Authors: Piotr Prewysz-Kwinto
Abstract:
A dynamic development of financial market is accompanied by the emergence of new products on stock exchanges which give absolutely new possibilities of investing money. Currently, the most innovative financial instruments offered to investors are exchange traded products (ETP). They can be defined as financial instruments whose price depends on the value of the underlying instrument. Thus, they offer investors a possibility of making a profit that results from the change in value of the underlying instrument without having to buy it. Currently, the Warsaw Stock Exchange offers many types of ETPs. They are investment products with full or partial capital protection, products without capital protection as well as leverage products, issued on such underlying instruments as indices, sector indices, commodity indices, prices of energy commodities, precious metals, agricultural produce or prices of shares of domestic and foreign companies. This paper presents the mechanism of functioning of ETP available on the Warsaw Stock Exchange and the results of the analysis of statistical data on these financial instruments.Keywords: Exchange traded products, financial market, investment, stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11751026 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State
Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi
Abstract:
Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.
Keywords: Soil organic carbon, horizon, pedon, Akure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6541025 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7791024 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371023 Investigation on the Feasibility of Composite Coil Spring for Automotive Applications
Authors: D. Abdul Budan, T.S. Manjunatha
Abstract:
This paper demonstrates the feasibility of replacing the metal coil spring with the composite coil spring. Three different types of springs were made using glass fiber, carbon fiber and combination of glass fiber and carbon fiber. The objective of the study is to reduce the weight of the spring. According to the experimental results the spring rate of the carbon fiber spring is 34% more than the glass fiber spring and 45% more than the glass fiber/carbon fiber spring. The weight of the carbon fiber spring is 18% less than the glass fiber spring, 15% less than the Glass fiber/carbon fiber spring and 80% less than the steel spring.Keywords: Carbon fiber, Glass fiber, Helical composite spring, spring rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46171022 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.
Keywords: Microwave, gas reforming, greenhouse gas, microwave receptor, catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10501021 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.
Keywords: Stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9981020 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field
Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova
Abstract:
One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.
Keywords: Carbon nanostructures, magnetic field, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26511019 Semantic Enhanced Social Media Sentiments for Stock Market Prediction
Authors: K. Nirmala Devi, V. Murali Bhaskaran
Abstract:
Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.
Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28001018 Estimation of Carbon Released From Dry Dipterocarp Forest Fire in Thailand
Authors: Ubonwan Chaiyo, Yannick Pizzo, Savitri Garivait
Abstract:
This study focused on the estimation of carbon released to the atmosphere from dry dipterocarp forest (DDF) fires in Thailand. Laboratory experiments were conducted using a cone calorimeter to simulate the DDF fires. The leaf litter collected from DDF in western Thailand was used as biomass fuel. Three different masses of leaf litter were employed, 7g, 10g and 13g, to estimate the carbon released from this type of vegetation fire to the atmosphere. The chemical analysis of the leaf litter showed that the carbon content in the experimental biomass fuel was 46.0±0.1%. From the experiments, it was found that more than 95% of the carbon input was converted to carbon released to the atmosphere, while less than 5% were left in the form of residues, and returned to soil. From the study, the carbon released amounted 440.213±2.243 g/kgdry biomass, and the carbon retained in the residues was 19.786±2.243 g/kgdry biomass. The quantity of biomass fuel consumed to produce 1 g of carbon released was 2.27±0.01gkgdry biomass. Using these experimental data of carbon produced by the DDF fires, it was estimated that this type of fires in 2009 contributed to 4.659 tonnes of carbon released to the atmosphere, and 0.229 tonnes of carbon in the residues to be returned to soil in Thailand.
Keywords: Carbon mass balance, carbon released, tropical dry dipterocarp forest, biomass bunring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24451017 Effects of the Stock Market Dynamic Linkages on the Central and Eastern European Capital Markets
Authors: Ioan Popa, Cristiana Tudor, Radu Lupu
Abstract:
The interdependences among stock market indices were studied for a long while by academics in the entire world. The current financial crisis opened the door to a wide range of opinions concerning the understanding and measurement of the connections considered to provide the controversial phenomenon of market integration. Using data on the log-returns of 17 stock market indices that include most of the CEE markets, from 2005 until 2009, our paper studies the problem of these dependences using a new methodological tool that takes into account both the volatility clustering effect and the stochastic properties of these linkages through a Dynamic Conditional System of Simultaneous Equations. We find that the crisis is well captured by our model as it provides evidence for the high volatility – high dependence effect.Keywords: Stock market interdependences, Dynamic System ofSimultaneous Equations, financial crisis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771016 Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process
Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana
Abstract:
Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's post hoc test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with F-values (12.37 and 31.88) greater than Fcrit (6.94) in contrary to carbon dioxide emission (F-values of 1.23 and 3.12 were less than Fcrit). Scheffe's post hoc test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission.Keywords: Analysis of variance, carbon dioxide, carbon monoxide, photocopying indoor, Scheffe's test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991015 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.
Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27881014 The Low-carbon Transition Exploration of China's Traditional Manufacturing Industries
Authors: Heng Ma
Abstract:
Aiming at the problems existing in low-carbon technology of Chinese manufacturing industries, such as irrational energy structure, lack of technological innovation, financial constraints, this paper puts forward the suggestion that the leading role of the government is combined with the roles of enterprises and market. That is, through increasing the governmental funding the adjustment of the industrial structures and enhancement of the legal supervision are supported. Technological innovation is accelerated by the enterprises, and the carbon trading will be promoted so as to trigger the low-carbon revolution in Chinese manufacturing field.
Keywords: Low-carbon economy, traditional manufacturing industry, industrial structure, carbon emission reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14471013 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet
Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa
Abstract:
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.Keywords: CFA, carbon, methyl violet, adsorption capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701012 Implementation of On-Line Cutting Stock Problem on NC Machines
Authors: Jui P. Hung, Hsia C. Chang, Yuan L. Lai
Abstract:
Introduction applicability of high-speed cutting stock problem (CSP) is presented in this paper. Due to the orders continued coming in from various on-line ways for a professional cutting company, to stay competitive, such a business has to focus on sustained production at high levels. In others words, operators have to keep the machine running to stay ahead of the pack. Therefore, the continuous stock cutting problem with setup is proposed to minimize the cutting time and pattern changing time to meet the on-line given demand. In this paper, a novel method is proposed to solve the problem directly by using cutting patterns directly. A major advantage of the proposed method in series on-line production is that the system can adjust the cutting plan according to the floating orders. Examples with multiple items are demonstrated. The results show considerable efficiency and reliability in high-speed cutting of CSP.
Keywords: Cutting stock, Optimization, Heuristics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17291011 Using Historical Data for Stock Prediction of a Tech Company
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.
Keywords: Finance, machine learning, opening price, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601010 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction
Authors: Tarek Aboueldahab
Abstract:
In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.
Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031009 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Nikos Mastorakis
Abstract:
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681008 Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal
Authors: Mousaab Alrhmoun, Magali Casellas, Michel Baudu, Christophe Dagot
Abstract:
The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: the pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process.
Keywords: Activated carbon, organic contaminants, Membrane bioreactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30531007 The Effect of Carbon on Molybdenum in the Preparation of Microwave Induced Molybdenum Carbide
Authors: Abd. Rahim Yacob, Mohd Khairul Asyraf Amat Mustajab, Nurshaira Haifa Suhaimi
Abstract:
This study shows the effect of carbon towards molybdenum carbide alloy when exposed to Microwave. This technique is also known as Microwave Induced Alloying (MIA) for the preparation of molybdenum carbide. In this study ammonium heptamolybdate solution and carbon black powder were heterogeneously mixed and exposed to microwave irradiation for 2 minutes. The effect on amount of carbon towards the produced alloy on morphological and oxidation states changes during microwave is presented. In this experiment, it is expected carbon act as a reducing agent with the ratio 2:7 molybdenum to carbon as the optimum for the production of molybdenum carbide alloy. All the morphological transformations and changes in this experiment were followed and characterized using X-Ray Diffraction and FESEM.Keywords: Carbon, molybdenum carbide, microwave induced alloying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23421006 Carbon Nanotubes with Magnetic Particles
Authors: Svitlana Kopyl, Vladimir Bystrov, Mikhail Maiorov, Manuel Valente, Igor Bdikin, Antonio C.M. Sousa
Abstract:
Magnetic carbon nanotubes composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Detailed investigation of magnetic behaviour of resulting composites was done at different temperatures. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature; however, no superparamagnetism was observed at 125 K and 80 K. The blocking temperature TB was estimated at 145 K. These magnetic carbon nanotubes have the potential of being used in a wide range of applications, in particular, the production of nanofluids, which can be controlled and steered by appropriate magnetic fields.Keywords: carbon nanotubes, magnetic nanoparticles, magnetization, nanofluids
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26801005 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5241004 Improving Carbon Sequestration in Concrete: A Literature Review
Authors: Adedokun D. A., Ndambuki J. M., Salim R. W.
Abstract:
Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.
Keywords: Carbon sequestration, Sodium carbonate, Sugar, concrete, Carbon dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27621003 Forecasting Stock Price Manipulation in Capital Market
Authors: F. Rahnamay Roodposhti, M. Falah Shams, H. Kordlouie
Abstract:
The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.Keywords: Price Manipulation, Liquidity, Size of Company, Floating Stock, Information Clarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853