Search results for: Multidimensional Sequence Data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7870

Search results for: Multidimensional Sequence Data

7840 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups

Authors: M. Heydari, S. A. Torabi

Abstract:

The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.

Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
7839 Symbolic Model Checking of Interactions in Sequence Diagrams with Combined Fragments by SMV

Authors: Yuka Kawakami, Tomoyuki Yokogawa, Hisashi Miyazaki, Sousuke Amasaki, Yoichiro Sato, Michiyoshi Hayase

Abstract:

In this paper, we proposed a method for detecting consistency violation between state machine diagrams and a sequence diagram defined in UML 2.0 using SMV. We extended a method expressing these diagrams defined in UML 1.0 with boolean formulas so that it can express a sequence diagram with combined fragments introduced in UML 2.0. This extension made it possible to represent three types of combined fragment: alternative, option and parallel. As a result of experiment, we confirmed that the proposed method could detect consistency violation correctly with SMV.

Keywords: UML, model checking, SMV, sequence diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
7838 Fast Dummy Sequence Insertion Method for PAPR Reduction in WiMAX Systems

Authors: Peerapong Uthansakul, Sakkarin Chaokuntod, Monthippa Uthansakul

Abstract:

In literatures, many researches proposed various methods to reduce PAPR (Peak to Average Power Ratio). Among those, DSI (Dummy Sequence Insertion) is one of the most attractive methods for WiMAX systems because it does not require side information transmitted along with user data. However, the conventional DSI methods find dummy sequence by performing an iterative procedure until achieving PAPR under a desired threshold. This causes a significant delay on finding dummy sequence and also effects to the overall performances in WiMAX systems. In this paper, the new method based on DSI is proposed by finding dummy sequence without the need of iterative procedure. The fast DSI method can reduce PAPR without either delays or required side information. The simulation results confirm that the proposed method is able to carry out PAPR performances as similar to the other methods without any delays. In addition, the simulations of WiMAX system with adaptive modulations are also investigated to realize the use of proposed methods on various fading schemes. The results suggest the WiMAX designers to modify a new Signal to Noise Ratio (SNR) criteria for adaptation.

Keywords: WiMAX, OFDM, PAPR, Dummy SequenceInsertion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
7837 Fixed Point of Lipschitz Quasi Nonexpansive Mappings

Authors: M. Moosavi, H. Khatibzadeh

Abstract:

In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.

Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192
7836 On the Central Limit Theorems for Forward and Backward Martingales

Authors: Yilun Shang

Abstract:

Let {Xi}i≥1 be a martingale difference sequence with Xi = Si - Si-1. Under some regularity conditions, we show that (X2 1+· · ·+X2N n)-1/2SNn is asymptotically normal, where {Ni}i≥1 is a sequence of positive integer-valued random variables tending to infinity. In a similar manner, a backward (or reverse) martingale central limit theorem with random indices is provided.

Keywords: central limit theorem, martingale difference sequence, backward martingale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
7835 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation

Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.

Keywords: Assembly automation, assembly attributes, assembly sequence generation, computer aided design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
7834 Predicting Protein Function using Decision Tree

Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur

Abstract:

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Keywords: Sequence Derived Features, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
7833 Multidimensional Performance Tracking

Authors: C. Ardil

Abstract:

In this study, a model, together with a software tool that implements it, has been developed to determine the performance ratings of employees in an organization operating in the information technology sector using the indicators obtained from employees' online study data. Weighted Sum (WS) Method and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method based on multidimensional decision making approach were used in the study. WS and TOPSIS methods provide multidimensional decision making (MDDM) methods that allow all dimensions to be evaluated together considering specific weights, allowing employees to objectively evaluate the problem of online performance tracking. The application of WS and TOPSIS mathematical methods, which can combine alternatives with a large number of dimensions and reach simultaneous solution, has been implemented through an online performance tracking software. In the application of WS and TOPSIS methods, objective dimension weights were calculated by using entropy information (EI) and standard deviation (SD) methods from the data obtained by employees' online performance tracking method, decision matrix was formed by using performance scores for each employee, and a single performance score was calculated for each employee. Based on the calculated performance score, employees were given a performance evaluation decision. The results of Pareto set evidence and comparative mathematical analysis validate that employees' performance preference rankings in WS and TOPSIS methods are closely related. This suggests the compatibility, applicability, and validity of the proposed method to the MDDM problems in which a large number of alternative and dimension types are taken into account. With this study, an objective, realistic, feasible and understandable mathematical method, together with a software tool that implements it has been demonstrated. This is considered to be preferable because of the subjectivity, limitations and high cost of the methods traditionally used in the measurement and performance appraisal in the information technology sector.

Keywords: Weighted sum, entropy ınformation, standard deviation, online performance tracking, performance evaluation, performance management, multidimensional decision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
7832 On the Properties of Pseudo Noise Sequences with a Simple Proposal of Randomness Test

Authors: Abhijit Mitra

Abstract:

Maximal length sequences (m-sequences) are also known as pseudo random sequences or pseudo noise sequences for closely following Golomb-s popular randomness properties: (P1) balance, (P2) run, and (P3) ideal autocorrelation. Apart from these, there also exist certain other less known properties of such sequences all of which are discussed in this tutorial paper. Comprehensive proofs to each of these properties are provided towards better understanding of such sequences. A simple test is also proposed at the end of the paper in order to distinguish pseudo noise sequences from truly random sequences such as Bernoulli sequences.

Keywords: Maximal length sequence, pseudo noise sequence, punctured de Bruijn sequence, auto-correlation, Bernoulli sequence, randomness tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6697
7831 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
7830 Momentum Accounting in Public Management: A Case Study in a Brazilian Navy-s Services Provider Military Organization

Authors: Rodrigo Barreiros Leal, Aracéli Cristina de Sousa Ferreira

Abstract:

This study examines the possibility to apply the theory of multidimensional accounting (momentum accounting) in a Brazilian Navy-s Services Provider Military Organization (Organização Militar Prestadora de Serviços - OMPS). In general, the core of the said theory is the fact that Accounting does not recognize the inertia of transactions occurring in an entity, and that occur repeatedly in some cases, regardless of the implementation of new actions by its managers. The study evaluates the possibility of greater use of information recorded in the financial statements of the unit of analysis, within the strategic decisions of the organization. As a research strategy, we adopted the case study. The results infer that it is possible to use the theory in the context of a multidimensional OMPS, promoting useful information for decision-making and thereby contributing to the strengthening of the necessary alignment of its administration with the current desires of the Brazilian society.

Keywords: Multidimensional Accounting, Public Management, Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
7829 UTMGO: A Tool for Searching a Group of Semantically Related Gene Ontology Terms and Application to Annotation of Anonymous Protein Sequence

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Gene Ontology terms have been actively used to annotate various protein sets. SWISS-PROT, TrEMBL, and InterPro are protein databases that are annotated according to the Gene Ontology terms. However, direct implementation of the Gene Ontology terms for annotation of anonymous protein sequences is not easy, especially for species not commonly represented in biological databases. UTMGO is developed as a tool that allows the user to quickly and easily search for a group of semantically related Gene Ontology terms. The applicability of the UTMGO is demonstrated by applying it to annotation of anonymous protein sequence. The extended UTMGO uses the Gene Ontology terms together with protein sequences associated with the terms to perform the annotation task. GOPET, GOtcha, GoFigure, and JAFA are used to compare the performance of the extended UTMGO.

Keywords: Anonymous protein sequence, Gene Ontology, Protein sequence annotation, Protein sequence alignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
7828 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: Attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
7827 Evaluation of the Zero Sequence Impedance of Overhead High Voltage Lines

Authors: Rabah Diabi

Abstract:

As known, the guard wires of overhead high voltage are usually grounded through the grounding systems of support and of the terminal stations. They do affect the zero sequence impedance value of the line, Z0, which is generally, calculated assuming that the wires guard are at ground potential. In this way it is not considered the effect of the resistances of earth of supports and stations. In this work is formed a formula for the calculation of Z0 which takes account of said resistances. Is also proposed a method of calculating the impedance zero sequence overhead lines in which, in various sections or spans, the guard wires are connected to the supports, or isolated from them, or are absent. Parametric analysis is given for lines 220 kV and 400 kV, which shows the extent of the errors made with traditional methods of calculation.

Keywords: Overhead line, power system, zero sequence, wire guard, grounding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6924
7826 A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning

Authors: Yuan-Jye Tseng, Fang-Yu Yu, Feng-Yi Huang

Abstract:

A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.

Keywords: green design, assembly and disassembly sequence planning, green design for assembly, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
7825 Data Preprocessing for Supervised Leaning

Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas

Abstract:

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.

Keywords: Data mining, feature selection, data cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6091
7824 A PN Sequence Generator based on Residue Arithmetic for Multi-User DS-CDMA Applications

Authors: Chithra R, Pallab Maji, Sarat Kumar Patra, Girija Sankar Rath

Abstract:

The successful use of CDMA technology is based on the construction of large families of encoding sequences with good correlation properties. This paper discusses PN sequence generation based on Residue Arithmetic with an effort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. All spreading codes with residual number system proposed earlier did not consider external interferences, multipath propagation, Doppler effect etc. In literature the use of residual arithmetic in DS-CDMA was restricted to encoding of already spread sequence; where spreading of sequence is done by some existing techniques. The novelty of this paper is the use of residual number system in generation of the PN sequences which is used to spread the message signal. The significance of cross-correlation factor in alleviating multi-access interference is also discussed. The RNS based PN sequence has superior performance than most of the existing codes that are widely used in DS-CDMA applications. Simulation results suggest that the performance of the proposed system is superior to many existing systems.

Keywords: Direct-Sequence Code Division Multiple Access (DSCDMA), Multiple-Access Interference (MAI), PN Sequence, Residue Number System (RNS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
7823 Face Recognition Using Eigen face Coefficients and Principal Component Analysis

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari

Abstract:

Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.

Keywords: Eigen Face, Multidimensional, Matching, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
7822 A Talking Head System for Korean Text

Authors: Sang-Wan Kim, Hoon Lee, Kyung-Ho Choi, Soon-Young Park

Abstract:

A talking head system (THS) is presented to animate the face of a speaking 3D avatar in such a way that it realistically pronounces the given Korean text. The proposed system consists of SAPI compliant text-to-speech (TTS) engine and MPEG-4 compliant face animation generator. The input to the THS is a unicode text that is to be spoken with synchronized lip shape. The TTS engine generates a phoneme sequence with their duration and audio data. The TTS applies the coarticulation rules to the phoneme sequence and sends a mouth animation sequence to the face modeler. The proposed THS can make more natural lip sync and facial expression by using the face animation generator than those using the conventional visemes only. The experimental results show that our system has great potential for the implementation of talking head for Korean text.

Keywords: Talking head, Lip sync, TTS, MPEG4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
7821 Reduced Dynamic Time Warping for Handwriting Recognition Based on Multidimensional Time Series of a Novel Pen Device

Authors: Muzaffar Bashir, Jürgen Kempf

Abstract:

The purpose of this paper is to present a Dynamic Time Warping technique which reduces significantly the data processing time and memory size of multi-dimensional time series sampled by the biometric smart pen device BiSP. The acquisition device is a novel ballpoint pen equipped with a diversity of sensors for monitoring the kinematics and dynamics of handwriting movement. The DTW algorithm has been applied for time series analysis of five different sensor channels providing pressure, acceleration and tilt data of the pen generated during handwriting on a paper pad. But the standard DTW has processing time and memory space problems which limit its practical use for online handwriting recognition. To face with this problem the DTW has been applied to the sum of the five sensor signals after an adequate down-sampling of the data. Preliminary results have shown that processing time and memory size could significantly be reduced without deterioration of performance in single character and word recognition. Further excellent accuracy in recognition was achieved which is mainly due to the reduced dynamic time warping RDTW technique and a novel pen device BiSP.

Keywords: Biometric character recognition, biometric person authentication, biometric smart pen BiSP, dynamic time warping DTW, online-handwriting recognition, multidimensional time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
7820 The Effect of Drug Prevention Programme Based On Cognitive-Behavioral Therapy (Cbt) and Multidimensional Self Concept Module towards Resiliency and Aggression among At-Risk Youth in Malaysia

Authors: Mohammad Aziz Shah Mohamed Arip, Aslina Ahmad, Fauziah Mohd Sa'ad, Samsiah Mohd Jais, Syed Sofian Syed Salim

Abstract:

This experimental study evaluates the effect of using Cognitive-Behavioral Therapy (CBT) and Multidimensional Self- Concept Model (MSCM) in a drug prevention programme to increase resiliency and reduce aggression among at-risk youth in Malaysia. A number of 60 (N=60) university students who were at-risk of taking drugs were involved in this study. Participants were identified with self-rating scales, Adolescent Resilience Attitude Scale (ARAS) and Aggression Questionnaire. Based on the mean score of these instruments, the participants were divided into the treatment group, and the control group. Data were analyzed using t-test. The finding showed that the mean score of resiliency was increased in the treatment group compared to the control group. It also shows that the mean score of aggression was reduced in the treatment group compared to the control group. Drug Prevention Programme was found to help in enhancing resiliency and reducing aggression among participants in the treatment group compared to the controlled group. Implications were given regarding the preventive actions on drug abuse among youth in Malaysia.

Keywords: Drug Prevention Programme, Cognitive-Behavioral Therapy (CBT), Multidimensional Self Concept Model (MSCM), resiliency, aggression, at-risk youth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
7819 The Role and Importance of Genome Sequencing in Prediction of Cancer Risk

Authors: M. Sadeghi, H. Pezeshk, R. Tusserkani, A. Sharifi Zarchi, A. Malekpour, M. Foroughmand, S. Goliaei, M. Totonchi, N. Ansari–Pour

Abstract:

The role and relative importance of intrinsic and extrinsic factors in the development of complex diseases such as cancer still remains a controversial issue. Determining the amount of variation explained by these factors needs experimental data and statistical models. These models are nevertheless based on the occurrence and accumulation of random mutational events during stem cell division, thus rendering cancer development a stochastic outcome. We demonstrate that not only individual genome sequencing is uninformative in determining cancer risk, but also assigning a unique genome sequence to any given individual (healthy or affected) is not meaningful. Current whole-genome sequencing approaches are therefore unlikely to realize the promise of personalized medicine. In conclusion, since genome sequence differs from cell to cell and changes over time, it seems that determining the risk factor of complex diseases based on genome sequence is somewhat unrealistic, and therefore, the resulting data are likely to be inherently uninformative.

Keywords: Cancer risk, extrinsic factors, genome sequencing, intrinsic factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
7818 Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins

Authors: Ewa Wywial, Shaneen M. Singh

Abstract:

The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.

Keywords: PRAF proteins, homology modeling, Arabidopsisthaliana

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
7817 Direct Sequence Spread Spectrum Technique with Residue Number System

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

In this paper, a residue number arithmetic is used in direct sequence spread spectrum system, this system is evaluated and the bit error probability of this system is compared to that of non residue number system. The effect of channel bandwidth, PN sequences, multipath effect and modulation scheme are studied. A Matlab program is developed to measure the signal-to-noise ratio (SNR), and the bit error probability for the various schemes.

Keywords: Spread Spectrum, Direct sequence, Bit errorprobability and Residue number system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649
7816 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.

Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
7815 Optimization of Flexible Job Shop Scheduling Problem with Sequence Dependent Setup Times Using Genetic Algorithm Approach

Authors: Sanjay Kumar Parjapati, Ajai Jain

Abstract:

This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.

Keywords: Flexible Job Shop, Genetic Algorithm, Makespan, Sequence Dependent Setup Times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294
7814 Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm

Authors: Melvin A. Ballera

Abstract:

Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning competency of learner. In this paper, a revolutionary technique has been proposed and tested to perform individualization and personalization using modified reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance matrix such as examinations, reviews, and study to form the RWSA single numerical fitness value. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on student's prior knowledge and real performance matrix.

Keywords: E-learning, fitness value, personalized learning sequence, reversed roulette wheel selection algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
7813 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
7812 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.

Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
7811 Linking Business Process Models and System Models Based on Business Process Modelling

Authors: Faisal A. Aburub

Abstract:

Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.

Keywords: Business process modelling, system models, role activity diagrams, sequence diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526