Search results for: software defect prediction.
2591 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases
Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García
Abstract:
This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.
Keywords: Conceptual modeling, JSON, NoSQL databases, requirements engineering, software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10862590 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14062589 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17762588 Bug Localization on Single-Line Bugs of Apache Commons Math Library
Authors: Cherry Oo, Hnin Min Oo
Abstract:
Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.Keywords: Software testing, fault localization, program spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11582587 Impact Analysis Based on Change Requirement Traceability in Object Oriented Software Systems
Authors: Sunil Tumkur Dakshinamurthy, Mamootil Zachariah Kurian
Abstract:
Change requirement traceability in object oriented software systems is one of the challenging areas in research. We know that the traces between links of different artifacts are to be automated or semi-automated in the software development life cycle (SDLC). The aim of this paper is discussing and implementing aspects of dynamically linking the artifacts such as requirements, high level design, code and test cases through the Extensible Markup Language (XML) or by dynamically generating Object Oriented (OO) metrics. Also, non-functional requirements (NFR) aspects such as stability, completeness, clarity, validity, feasibility and precision are discussed. We discuss this as a Fifth Taxonomy, which is a system vulnerability concern.
Keywords: Artifacts, NFRs, OO metrics, SDLC, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11662586 Analytical Model Prediction: Micro-Cutting Tool Forces with the Effect of Friction on Machining Titanium Alloy (Ti-6Al-4V)
Authors: Mohd Shahrom Ismail, B.T. Hang Tuah Baharudin, K.K.B. Hon
Abstract:
In this paper, a methodology of a model based on predicting the tool forces oblique machining are introduced by adopting the orthogonal technique. The applied analytical calculation is mostly based on Devries model and some parts of the methodology are employed from Amareggo-Brown model. Model validation is performed by comparing experimental data with the prediction results on machining titanium alloy (Ti-6Al-4V) based on micro-cutting tool perspective. Good agreements with the experiments are observed. A detailed friction form that affected the tool forces also been examined with reasonable results obtained.Keywords: dynamics machining, micro cutting tool, Tool forces
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16902585 Multiple Organ Manifestation in Neonatal Lupus Erythematous (Report of Two Cases)
Authors: Lubis A., Widayanti R., Hikmah Z., Endaryanto A., Harsono A., Harianto A., Etika R., Handayani D. K., Sampurna M.
Abstract:
Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.
Keywords: Neonatus lupus erythematous, maternal autoantibody, clinical characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21082584 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: Surface roughness, fused deposition modelling, adaptive neuro fuzzy inference system, ANFIS, orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19092583 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries: A Case Study
Authors: A. M. Qahtani, G. B. Wills, A. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.
Keywords: Customisation Software Products, Global Software Engineering, Local Decision Making, Requirement Engineering, Simulation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19002582 Transient Heat Transfer Model for Car Body Primer Curing
Authors: D. Zabala, N. Sánchez, J. Pinto
Abstract:
A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20422581 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.
Keywords: NARX, prediction, stock market, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8182580 Implementation of an On-Line PD Measurement System Using HFCT
Authors: F. Haghjoo, M. Sarlak, S.M. Shahrtash
Abstract:
In order to perform on-line measuring and detection of PD signals, a total solution composing of an HFCT, A/D converter and a complete software package is proposed. The software package includes compensation of HFCT contribution, filtering and noise reduction using wavelet transform and soft calibration routines. The results have shown good performance and high accuracy.Keywords: Partial Discharge, Measurement, On-line, HFCT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18252579 The Impact of Upgrades on ERP System Reliability
Authors: F. Urem, K. Fertalj, I. Livaja
Abstract:
Constant upgrading of Enterprise Resource Planning (ERP) systems is necessary, but can cause new defects. This paper attempts to model the likelihood of defects after completed upgrades with Weibull defect probability density function (PDF). A case study is presented analyzing data of recorded defects obtained for one ERP subsystem. The trends are observed for the value of the parameters relevant to the proposed statistical Weibull distribution for a given one year period. As a result, the ability to predict the appearance of defects after the next upgrade is described.Keywords: ERP, upgrade, reliability, Weibull model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16452578 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632577 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem
Authors: A. H. Akhaveissy
Abstract:
Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16032576 Vibration Induced Fatigue Assessment in Vehicle Development Process
Authors: Fatih Kagnici
Abstract:
Improvement in CAE methods has an important role for shortening of the vehicle product development time. It is provided that validation of the design and improvements in terms of durability can be done without hardware prototype production. In recent years, several different methods have been developed in order to investigate fatigue damage of the vehicle. The intended goal among these methods is prediction of fatigue damage in a short time with reduced costs. This study developed a new fatigue damage prediction method in the automotive sector using power spectrum densities of accelerations. This study also confirmed that the weak region in vehicle can be easily detected with the method developed in this study which results were compared with conventional method.
Keywords: Fatigue damage, Power spectrum density, Vibration induced fatigue, Vehicle development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31362575 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen
Abstract:
In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.
Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24932574 Implementation and Demonstration of Software-Defined Traffic Grooming
Authors: Lei Guo, Xu Zhang, Weigang Hou
Abstract:
Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.
Keywords: NOX, OpenFlow, software defined network, traffic grooming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10362573 Automated Java Testing: JUnit versus AspectJ
Authors: Manish Jain, Dinesh Gopalani
Abstract:
Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.Keywords: Aspect oriented programming, AspectJ, Aspects, JUnit, software testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19172572 Studying on ARINC653 Partition Run-time Scheduling and Simulation
Authors: Dongliang Wang, Jun Han, Dianfu Ma, Xianqi Zhao
Abstract:
Avionics software is safe-critical embedded software and its architecture is evolving from traditional federated architectures to Integrated Modular Avionics (IMA) to improve resource usability. ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Arinc653 uses two-level scheduling strategies, but current modeling tools only apply to simple problems of Arinc653 two-level scheduling, which only contain time property. In avionics industry, we are always manually allocating tasks and calculating the timing table of a real-time system to ensure it-s running as we design. In this paper we represent an automatically generating strategy which applies to the two scheduling problems with dependent constraints in Arinc653 partition run-time environment. It provides the functionality of automatic generation from the task and partition models to scheduling policy through allocating the tasks to the partitions while following the constraints, and then we design a simulating mechanism to check whether our policy is schedulable or notKeywords: Arinc653, scheduling, task allocation, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23532571 Mathematical Modeling for the Processes of Strain Hardening in Heterophase Materials with Nanoparticles
Authors: Mikhail Semenov , Svetlana Kolupaeva, Tatiana Kovalevskaya, Olga Daneyko
Abstract:
An investigation of the process of deformation hardening and evolution of deformation defect medium in dispersion-hardened materials with face centered cubic matrices and nanoparticles was done. Mathematical model including balance equation for the deformation defects was used.
Keywords: deformation defects, dispersion-hardened materials, mathematical modeling, plastic deformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15022570 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity
Authors: Sujit K. Basak
Abstract:
The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data were analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks, namely, Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research productivity followed by perceived usefulness and perceived ease of use.Keywords: Technology acceptance model, training needs assessment model, literature review software, research productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29862569 Moving From Problem Space to Solution Space
Authors: Bilal Saeed Raja, M. Ali Iqbal, Imran Ihsan
Abstract:
Extracting and elaborating software requirements and transforming them into viable software architecture are still an intricate task. This paper defines a solution architecture which is based on the blurred amalgamation of problem space and solution space. The dependencies between domain constraints, requirements and architecture and their importance are described that are to be considered collectively while evolving from problem space to solution space. This paper proposes a revised version of Twin Peaks Model named Win Peaks Model that reconciles software requirements and architecture in more consistent and adaptable manner. Further the conflict between stakeholders- win-requirements is resolved by proposed Voting methodology that is simple adaptation of win-win requirements negotiation model and QARCC.Keywords: Functional Requirements, Non Functional Requirements, Twin Peaks Model, QARCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18702568 Underlying Cognitive Complexity Measure Computation with Combinatorial Rules
Authors: Benjapol Auprasert, Yachai Limpiyakorn
Abstract:
Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.Keywords: Cognitive Complexity Measure, Cognitive Weight of Basic Control Structure, Counting Rules, Cumulative Variable Counting Scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022567 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software
Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura
Abstract:
This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24642566 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12002565 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.
Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16602564 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19052563 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process
Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17302562 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: Audit, machine learning, assessment, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049