Open Science Index, Mathematical and Computational Sciences Vol:5, No:7, 2011 publications.waset.org/11464.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:5, No:7, 2011

Mathematical modeling for the processes
of strain hardening in heterophase materials
with nanoparticles

Mikhail Semenov*, Svetlana Kolupaeva, Tatiana Kovalevskaya, and Olga Daneyko

Abstract—An investigation of the process of deformation hard-
ening and evolution of deformation defect medium in dispersion-
hardened materials with face centered cubic matrices and nanoparti-
cles was done. Mathematical model including balance equation for
the deformation defects was used.
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1. INTRODUCTION

LASTIC deformation of face centered cubic (FCC) metals

has been investigated for many years. Detailed descrip-
tions have been developed to explain the basic process of
plastic deformation which realise in single crystals of metallic
materials [1]-[4]. The description of the macroscopic stress-
strain behavior and deep understanding of the role of the differ-
ent microscopic mechanisms are important from the viewpoint
of both materials science and engineering applications.

An important role in wide range of deformation conditions
in metals plays plastic deformation by crystallographic slip.

Although the basic mechanisms of plastic deformation have
been known for a long time, the attempts of modeling the
process of strain hardening and evolution of the defect medium
taking into account the different mechanisms of generation and
annihilation of deformation defects have only begun recently
[51-(10].

The primary goal of developing any mathematical models
is to have a tool that can describe the behavior of material.
One of the most important relationships that describe the
material performance under loading is the stress-strain curve.
Temperature and strain rate dependencies of the flow stress and
densities of dislocations and concentrations of point defects
also have great interest to researchers.

The mathematical models developed into different groups:

(a) Empirical models [11]-[14].

(b) Microstructurally-based models are based on the mi-
cromechanics of plastic deformation and are rooted in the
thermally-activated motion of dislocations [15]-[19].

(c) Models based on the theory of thermal activation mech-
anism of dislocation motion, where the physical meaning of
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each model parameter will be shown by their relationships
with microstructural characteristics [20].

The achievements in mathematical modeling and computa-
tional experiment have increasingly become in recent years.
These achievements as information technology for obtaining
new knowledge about the world around us are important
for various fields of science. The apparatus of differential
equations is used for the mathematical description of various
natural phenomena and many fundamental laws [21]-[23].
Research evolution of a deformation subsystem, the roles of
different mechanisms of generation and annihilation of various
defects in the work hardening in FCC metals and alloys under
loading are some examples of the problem where mathematical
modeling can be effectively used. In this case differential
equations of balance type widely use.

However exact solutions of differential equations are pos-
sible only for a limited class of problems. It is necessary
a development of different methods for numerical solution
of the system of ordinary differential equations (ODEs). The
mathematical models of physical processes are often stiff. In
this case it is important to made optimal choice of method
for solution of ODEs and create new algorithms for analysis
of physical process. The important role among the different
numerical methods for solution of ODEs have difference meth-
ods. Their essential advantage is the simple algorithmization
and the computer simulation [22].

Due to the unique properties nanostructure materials occupy
a key position in modern materials science. Investigation of a
role of the deformation defects in the regularities of plastic
behavior is an essential component for the analysis of the
physical properties of the materials. In this work we used a
mathematical model, including the differential equations of
balance of deformation defects [8], [24]-[28] to investigate
temperature and strain rate dependencies of the flow stress
and the role of different deformation defects in regularities of
plastic behavior of materials with FCC matrix and nanodis-
persion hardening phase.

The dispersion hardening phase into the material leads to
the considerable complication of a modeling object. Interaction
of dislocations with the particles in the process of plastic
deformation results not only in hardening effect, but also
to appearance of new elements of dislocation structure. The
scale characteristics of the hardening particles (size, shape and
distance between them) can change the character and the result
of this interactions.

The numerical experiments are simulated by the mathemat-
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ical model of the process of deformation hardening and evo-
lution of defect medium in dispersion-hardened materials are
done. The outline of this study is organized as follows: Section
II gives a brief description of mathematical model; Section III
presents the software for the numerical experiments; Section
IV shows the results of experiments; and Section V presents
the discussions and also conclusion.

II. DESCRIPTION OF THE MATHEMATICAL MODEL

The mathematical model of plastic deformation in disper-
sion hardened materials with nanoparticles describe in this
section. The research is based on the assumption that the
particles are incoherent, non-deformed and spherical. It takes
into account the main processes of generation and annihilation
of dislocations and point defects of different type [29]. The
differential equations of the balance of deformation defects are
used in the following form [29]:
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The mathematical model also includes an equation that con-
nects strain rate with the stress and the density of deformation
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TABLE I

DESCRIPTION OF MATHEMATICAL MODEL PARAMETERS

Parameter  Description
P total dislocation density
i density of dislocation in the dipole configurations of the
Pa interstitial type
v density of dislocation in the dipole configurations of the
Pa vacancy type
Pd =py + pg, density of dislocations in dipole configurations
Pm density of shear-forming dislocations
pé, density of prismatic dislocation loops of the interstitial type
Pp density of prismatic dislocation loops of the vacancy type
Pp =pp+ me density of prismatic dislocation loops
Clv concentrations of monovacancies
v concentrations of bivacancies
ci concentrations of interstitial atoms
0 concentration of thermodynamically equilibrium point defects
J of the jth type (j = ¢,v)
& =cj + c? total concentration of point defects of the jth type
(J=1iv)
a shear strain
at strain rate
t time
B parameter, which is determined by the probability of disloca-
tion barriers limiting the shear zone [8]
P parameter, Which_ is.deljcrmi.ned by .the shape of dislocation
loops and their distribution in the slip zone [8]
q parameter that determines the intensity of point defects gen-
eration
T temperature
A average length of free dislocation segment [8]
Ap distance between the centers of the particles
6 diameter of particle of hardened phase
« parameter of dislocations interaction
Qq parameter of athermal interaction of dislocations
b Burgers vector
Br fraction of reacting forest dislocations
D diameter of the slip zone
G shear modulus
) parameter of geometrical characteristics of dislocations on the
particles
k Boltzmann constant
13 fraction of forest dislocations
v Poisson coefficient
vp Debye frequency
ws fraction of screw dislocations
Pys probability of annihilation of screw dislocations
Q; =Zjvpexp(—=UJ" [kT), j = i,v
Ta critical capture radius
T flow stress
Tdyn stress excess over the static resistance to dislocation motion
Tf friction stress
- gthermic component of the resistance to the dislocation glid-
ing
um ac'tivaFion energy of migration of point defects of the jth type
J G =10
Z; numbelr of §ites possible for the jump of the defect of the jth
type ( =%, v)
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Fig. 1. Main Window of Software “Slip Plasticity of Face-Centered Cubic”

defects [29], [30]:
0= SVBﬁi/ZTz;(((l*ﬁr)pm + PpJFPd)(T*Ta))l/B %
TEV/SF (1= B,) G303 (T2 =G0 EBopm) il (g)

< 0.2Gb3(TTa)Ab2)
X exp | — o7

where 7, = 75 + Gb/(A, — 6) + a,Gb,/p. The descriptions
of mathematical model parameters are represented in Table I.

III. SOFTWARE

The software “Slip Plasticity of Face-Centered Cubic”
(SPFCC) for computer simulations of plastic deformation
processes of strain hardening in heterophase materials with
nanoparticles used in this study described in this section.

The software SPFCC are oriented for the users who has
different qualification in programming and who has not an
experience in solution of ODEs. In this software the mathemat-
ical models for various materials and loading similar to model
(see the equations (1)—(9)) are realised in Delphi 2010 as
integrated application package for Windows XP/Vista/7 [26],
[27].

The package consists of four class hierarchies: first class for
the representation of ODEs, a second class for the parameters
of an ODEs problem, a third class hierarchy for solving initial
value problems, and, at last, class for storing of result of
experiments in data base. The software realization by class
organization allows making the program more flexible for the
further updating. The researcher must to choose the equations
for numerical experiments. For viewing or change of variable,
value of parameter, entry condition of model it is necessary
to click mouse only (Fig. 1).

The equations of the model are stiff because the processes
of generation and annihilation of deformation defects have
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Fig. 2. Stress-strain curves of copper-based alloy. The distance between
particles, nm: a, b, ¢ — 50; d, e, f — 100. Strain rate is 10735~ 1. The
temperature and size of particles are shown in the figure

essentially different rates. Use of implicit Gear’s method of
the variable order is more effective for solution of the model
equations. The explicit Adams method with the step-by-step
control of accuracy for the beginning of work is applied. The
results of the carried out calculations together with the short
description of the constructed model can be stored in data base
or .txt files. The results of simulations can be represented as
graphs of different type and save as .jpg file.

IV. RESULTS AND DISCUSSION

Using the model (see the equations (1)—(9)), we studied the
temperature and strain rate dependences on the curves of the
flow stress and on the curves of densities of dislocation and
on the curves of concentrations of point defect in dispersion-
hardened materials with copper matrices and incoherent unde-
formable particles in condition of constant srain rate. The main
computations were performed with software SPFCC using the
following model parameters [3], [7], [31]: b = 2.5 x 10~ 19m,
F =5 a=05 vp = 10851 . = 0.3, 8. = 0.14,
£ =05, 7 =1 MPa, agyn, = 0.33, and ws = 0.3. The
initial conditions are as follows: p,, = 102m=2, p) = pi; =
=ph=p, =0, c,=ci =gy = 0.

Results obtained for dispersion-hardened materials with the
nanosize hardening phase indicate that the influence of the
temperature and scale characteristics of the hardening phase
on the flow stress is single-valued, but multidirectional. The
flow stress is reduced with reduction of the particle size or
with increase of the distance between them, or with rise of
the deformation temperature (Fig. 2).

The analysis of dependence of the dislocation of different
type and the total dislocation density (Fig. 3, scale charac-
teristics of the hardening phase corresponding to Fig. 2 (b))
shows that with the rise of the temperature the dislocation
density in the prismatic loops of vacancy and interstitial types
are reduction (Fig. 3 (c), (d)), the density of shear-forming
dislocations changes complex (Fig. 3 (b)). This is due to the
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Fig. 3.  The dependence of the total dislocation density (a), the density

of shear-forming dislocations (b), the density of prismatic dislocation loops
of vacancy (c) and interstitial (d) type on strain. The distance between the
particles is 50 nm, the particle diameter is 10 nm. The temperature is shown
in the figure

fact that the density of shear-forming dislocations considerably
depends on the intensity of generation and annihilation of
defects of different types. On the one part, shear-forming dislo-
cations annihilate as a result of climb of unscrew dislocations
due to the accumulation of point defects on their extraplanes.
On the other part, the density of shear-forming dislocations
increases due to the fact that prismatic loops growing in the
result of accumulation of point defects on them, lose stability
and transform into shear-forming dislocations.

At low temperatures (93-293 K) prismatic dislocation loops
of the vacancy type give the greatest contribution to the total
dislocation density (Fig. 4). At meddle and high temperatures
the dislocation densities in prismatic loops of the vacancy
and interstitial types become approximately equal. Dislocation
dipoles are not formed at wide range temperature and strain
rate, and, as a result, do not contribute to the work hardening
of material with nanoparticles.

For less deformation (0.05 and below) the dominating
element of the dislocation subsystem is shear-forming dislo-
cations for all studied temperatures and scale characteristics
of the hardening phase. The contribution of shear-forming
dislocations and dislocations in prismatic loops of the vacancy
and interstitial types to the total dislocation density rise with
increasing of deformation (Figs. 4 and 5). For larger particle
and smaller distances between them, and different strain rates
for different values of strain higher deformation hardening
shows (Fig. 6). The most temperature dependence of flow
stress in nanodispersed material for low temperatures (below
293 K) shows. This is due to the fact that at higher temperature
more point defects participate in annihilation processes. It is
one more range of the temperature dependence of flow stress
for a low strain rate at high temperatures (Fig. 6 (g), (h), (1)).
In this range of temperatures thermodynamically equilibrium
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Fig. 4. Contribution from dislocations of different types to the total
dislocation density in a dispersion-hardened material. The particle size is
10 nm, and the distance between the particles is 50 nm. The deformation
temperature is shown in the figure

& =18 nm =3 nm

Fig. 5.

Contribution from dislocations of different types to the total
dislocation density during deformation at temperature 493 K. The distance
between the particles, nm: a, b, ¢ — 50; d, e, f — 100. The particle size is
shown in the figure

point defects play a significant role in the annihilation of
dislocations. For this reason at high temperatures the strain
rate dependence of flow stress is obtained.

The form of the curves of temperature dependence for the
density of shear-forming dislocation practically independs on
the scale characteristics of the hardening phase. The dislo-
cation density in the prismatic loops decreases with the rise
of temperature in materials with different scale characteristics
(Fig. 7 (d-1)).

For rise of temperature from 93 to 393 K the density
of shear-forming dislocations increases and the density of
dislocations in prismatic loops of the vacancy type decreases

1SN1:0000000091950263
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Fig. 7. The temperature dependence of the shear-forming dislocations density
and density of the dislocations in prismatic dislocation loops of interstitial
type. The distance between the particles, nm: 1, 2, 3 — 50; 4, 5, 6 — 100;
partigle t]:liameter, nm: 1, 4 — 5; 2,5 —10; 3, 6 — 20. The strain rate is
10725~

at the different strain rates (Fig. 8). At meddle temperatures
(393-793 K) the strain rate dependence and temperature
dependence of the densities of both shear-forming dislocations
and dislocations in prismatic loops of the vacancy type are
not distinct (Figs. 7 and 8). At high temperatures (793—
893 K) a decrease in densities of shear-forming dislocations
and dislocations in prismatic loops occurs, which is caused
by the involvement of thermodynamically equilibrium point
defects in the annihilation processes. This is especially visible
at high strain rate (Fig. 8 (a), (b), curve 3).
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V. CONCLUSION

The software Slip Plasticity of Face-Centered Cubic
(SPFCC) for computer simulations of plastic deformation
processes for research of strain hardening in heterophase
materials with nanoparticles is used.

In dispersion-hardened materials with the nanodispersion
hardening phase the flow stress and density of the components
of the deformation defect subsystem are significantly higher
than ones in materials with larger particles for the same
volume fraction of the hardening phase.

For nanoscale characteristics of the hardening phase the
generation of dislocations in dipole configurations is absent
during deformation.

The various mechanisms of generation and annihilation of
dislocations of various types dominate at different tempera-
tures; it is results to the complex temperature dependence of
the density of shear-forming dislocations.
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