Search results for: Stewart dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 888

Search results for: Stewart dynamics

348 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
347 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
346 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
345 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
344 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
343 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah

Abstract:

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
342 Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator

Authors: Ng Yee Luon, Mohd Zamri Yusoff, Norshah Hafeez Shuaib

Abstract:

Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.

Keywords: Mesh generation, tetrahedral, CFD, Delaunay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
341 Power Distance and Knowledge Management from a Post-Taylorist Perspective

Authors: John Walton, Vishal Parikh

Abstract:

Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.

Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
340 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
339 Political Preconditions for National Values of the Kazakhstan Nation

Authors: Zhazira Kuanyshbayeva

Abstract:

Article is devoted to the problem of Kazakhstan people national values in the conditions of the Republic of Kazakhstan independence. Formation of ethnos national values is viewed as the mandatory constituent of this process in contemporary conditions. The article shows the dynamics of forming socialspiritual basis of Kazakhstan people-s national values. It depicts peculiarities of interethnic relations in poly-ethnic and multiconfessional Kazakhstan. The study reviews in every detail various directions of the state social policy development in the sphere of national values. It is aimed to consolidation of the society to achieve the shared objective, i.e. building democratic and civilized state. The author discloses peculiarities of ethnos national values development using specific sources. It is underlined that renewal and modernization of Kazakhstan society represents new stage in the national value development, and its typical feature is integration process based on peoples- friendship, cultural principles of interethnic communication.

Keywords: Interethnic relation, Kazakhstan people, national policy, national values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
338 Measurement and Estimation of Evaporation from Water Surfaces: Application to Dams in Arid and Semi Arid Areas in Algeria

Authors: Malika Fekih, Mohamed Saighi

Abstract:

Many methods exist for either measuring or estimating evaporation from free water surfaces. Evaporation pans provide one of the simplest, inexpensive, and most widely used methods of estimating evaporative losses. In this study, the rate of evaporation starting from a water surface was calculated by modeling with application to dams in wet, arid and semi arid areas in Algeria. We calculate the evaporation rate from the pan using the energy budget equation, which offers the advantage of an ease of use, but our results do not agree completely with the measurements taken by the National Agency of areas carried out using dams located in areas of different climates. For that, we develop a mathematical model to simulate evaporation. This simulation uses an energy budget on the level of a vat of measurement and a Computational Fluid Dynamics (Fluent). Our calculation of evaporation rate is compared then by the two methods and with the measures of areas in situ.

Keywords: Evaporation, Energy budget, Surface water temperature, CFD, Dams

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5750
337 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamics

Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao

Abstract:

This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, Saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effects of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

Keywords: Asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
336 Multimode Dynamics of the Beijing Road Traffic System

Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun

Abstract:

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

Keywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
335 Dynamic Model of Automatic Loom on SimulationX

Authors: A. Jomartov, A. Tuleshov, B. Tultaev

Abstract:

One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.

Keywords: Automatic loom, dynamics, model, multibody, SimulationX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
334 Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

Keywords: Fuzzy controller, high-performance, inductionmotor, intelligent control, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
333 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
332 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

Authors: Farid Vahedi

Abstract:

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5429
331 Distillation Monitoring and Control using LabVIEW and SIMULINK Tools

Authors: J. Fernandez de Canete, P. Del Saz Orozco, S. Gonzalez-Perez

Abstract:

LabVIEW and SIMULINK are two most widely used graphical programming environments for designing digital signal processing and control systems. Unlike conventional text-based programming languages such as C, Cµ and MATLAB, graphical programming involves block-based code developments, allowing a more efficient mechanism to build and analyze control systems. In this paper a LabVIEW environment has been employed as a graphical user interface for monitoring the operation of a controlled distillation column, by visualizing both the closed loop performance and the user selected control conditions, while the column dynamics has been modeled under the SIMULINK environment. This tool has been applied to the PID based decoupled control of a binary distillation column. By means of such integrated environments the control designer is able to monitor and control the plant behavior and optimize the response when both, the quality improvement of distillation products and the operation efficiency tasks, are considered.

Keywords: Distillation control, software tools, SIMULINKLabVIEWinterface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3813
330 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work

Authors: O. Lasaga

Abstract:

Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.

Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
329 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries

Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis

Abstract:

In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.

Keywords: CFD, CMA evolution strategy, DEM, magnetic navigation, spherical particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
328 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

Authors: Santhakumar M., Asokan T.

Abstract:

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
327 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
326 CFD Simulations of Flow in Capillary Flow Liquid Acquisition Device Channel

Authors: John B. McQuillen, David F. Chao, Nancy R. Hall, Brian J. Motil, Nengli Zhang

Abstract:

Future space vehicles will require the use of non-toxic, cryogenic propellants, because of the performance advantages over the toxic hypergolic propellants and also because of the environmental and handling concerns. A prototypical capillary flow liquid acquisition device (LAD) for cryogenic propellants was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations with different submersion depths of the LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel, including horizontally and vertically submersions of the LAD channel assembly at normal gravity environment was conducted. Gravity effects on the flow field in LAD channel are inspected and analyzed through comparing the simulations.

Keywords: Liquid acquisition device, cryogenic propellants, CFD simulation, vertically submerged screen channel, gravity effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
325 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4471
324 CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha

Authors: D. Salari, A. Niaei, P. Chitsaz Yazdi, M. Derakhshani, S. R. Nabavi

Abstract:

This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section of the reactor. The reaction scheme was involved one primary reaction and 24 secondary reactions. Because of high CPU times in these simulations, parallel processing have been used. In this study the coke formation process in fixed bed and empty tube reactor was simulated and coke in these reactors are compared. In addition, the effect of steam ratio and feed flow rate on coke formation was investigated.

Keywords: Coke Formation, CFD Simulation, Fixed Bed, Catalyitic Cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
323 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: Gyro, gimbal, Lagrange equation, spherical robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
322 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: Cavitation, Drug Delivery, Nanodroplets, Ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
321 Assessment of the Influence of External Earth Terrain at Construction of the Physicmathematical Models or Finding the Dynamics of Pollutants' Distribution in Urban Atmosphere

Authors: Stanislav Aryeh V. Fradkin, Sharif E.Guseynov

Abstract:

There is a complex situation on the transport environment in the cities of the world. For the analysis and prevention of environmental problems an accurate calculation hazardous substances concentrations at each point of the investigated area is required. In the turbulent atmosphere of the city the wellknown methods of mathematical statistics for these tasks cannot be applied with a satisfactory level of accuracy. Therefore, to solve this class of problems apparatus of mathematical physics is more appropriate. In such models, because of the difficulty as a rule the influence of uneven land surface on streams of air masses in the turbulent atmosphere of the city are not taken into account. In this paper the influence of the surface roughness, which can be quite large, is mathematically shown. The analysis of this problem under certain conditions identified the possibility of areas appearing in the atmosphere with pressure tending to infinity, i.e. so-called "wall effect".

Keywords: Air pollution, concentration of harmful substances, physical-mathematical model, urban area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
320 The First Ground Track Maintenance Manoeuvre of THEOS Spacecraft

Authors: Pornthep Navakitkanok, Ammarin Pimnoo, Seksan Jaturat

Abstract:

THEOS is the first earth observation spacecraft of Thailand which was launched on the 1st October 2008 and is currently operated by GISTDA. The transfer phase has been performed by Astrium Flight Dynamics team leading to a hand over to GISTDA teams starting mid-October 2008. The THEOS spacecraft-s orbit is LEO and has the same repetitivity (14+5/26) as the SPOT spacecraft, i.e. the same altitude of 822 km but it has a different mean local solar time (LST). Ground track maintenance manoeuvres are performed to maintain the ground track within a predefined control band around the reference ground track and the band is ±40 km for THEOS spacecraft. This paper presents the first ground track maintenance manoeuvre of THEOS spacecraft and the detailed results. In addition, it also includes one and a half year of operation as seen by GISTDA operators. It finally describes the foreseenable activities for the next orbit control manoeuvre (OCM) preparation.

Keywords: Orbit Control Manoeuvre, Ground Track Error, Local Solar Time Error, LEO, THEOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
319 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.

Keywords: CFD, EHL, Kurtosis, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178