Search results for: Genetic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8032

Search results for: Genetic data

7492 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
7491 The Comparison of Data Replication in Distributed Systems

Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf

Abstract:

The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.

Keywords: data replication, data hiding, consistency, dynamicdata replication strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
7490 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
7489 Genetic Polymorphism of the Acute Lymphoblastic Leukaemia and Hyperhomocysteinemia its Relation with the for a Group of Children in the East of Algeria

Authors: Yahia Massinissa, Kalla A, Yahia M, Benbia S

Abstract:

A lot of recent research have spoken on the relation between the increase of the homocysteinemia and some kinds of cancer . For that, our study was based on the research of a possible relation between the increase of the concentration of this amino-acid in the plasma and the appearance of the disease of the Acute Lymphoblastic Leukaemia in a part of Algerian children with Berber origin in the East of Algeria . The study has done on 47 ill persons with an average age of (09±06 ) years , with whom the disease has diagnosed by blood and marrow examination in the hospital of blood diseases in the CHU of Batna, and on 194 healthy witnesses of the same age. The two groups were benefited by a dosage of the concentration of the homocysteine vitamin B9 ,vitamin B12 , and also of the study of special polymorphisms of indispensable enzymes in the metabolism of this acid , and that by the use of the method ( Light cycler ) Real time PCR , on the following enzymes : MS ( C2756G ), MSR ( A66G ) ,MTHFR1 ( C677T ) and MTHFR2 (A1298C). The obtained results have revealed that the rate of the homozygote muted genotype is the less frequent in the two groups , and that exist at list one genotype of each enzyme in the ill group and in which the percentage exceed with remarkable way the same genotype in the healthy group and we notice specially the muted genotype GG of -the methionine synthetase-and the form TT of the enzyme – methyline tetra hydrofolate reductase – We notice the existence of considerable number of genotypes in the ill group lied with characteristic increase of this Amino-acid ,and that for the reduction of the biologic activity of these enzymes which become inefficient in the transfer of the homocysteine into the methionine and cause the diminution of the biologic activity of these enzymes and with consequence the reduction of the percentage of methylic radicals in the DNA of studied genes and that lead to the increase of the activity and the capacity of transcription , and it-s so probably that this last one is one of the factors of this disease especially if we know that the specific check-up of vitamins is normal and similar in the two groups , which ovoid the hypothesis of the reduction of vitamins . We notice also that the heterozygote genotype is the less in the sick category except the MTHFR2. Wild genotype is more frequent in the witness group except MSR. Even these results are partials; they open a new way in the genetic diagnosis of this malicious disease which allow a precocious diagnosis and the use of an effective and appropriated treatment in the same time.

Keywords: Genetic polymorphism, Acute Lymphoblastic Leukaemia, Biomarkers, Metabolism of homocystein

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
7488 Liquid-Liquid Equilibria for Ternary Mixtures of (Water + Carboxylic Acid+ MIBK), Experimental, Simulation, and Optimization

Authors: D. Laiadi, A. Hasseine, A. Merzougui

Abstract:

In this work, Experimental tie-line results and solubility (binodal) curves were obtained for the ternary systems (water + acetic acid + methyl isobutyl ketone (MIBK)), (water + lactic acid+ methyl isobutyl ketone) at T = 294.15K and atmospheric pressure. The consistency of the values of the experimental tie-lines was determined through the Othmer-Tobias and Hands correlations. For the extraction effectiveness of solvents, the distribution and selectivity curves were plotted. In addition, these experimental tieline data were also correlated with NRTL model. The interaction parameters for the NRTL model were retrieved from the obtained experimental results by means of a combination of the homotopy method and the genetic algorithms.

Keywords: Liquid-liquid equilibria, homotopy methods, carboxylic acid, NRTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5621
7487 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
7486 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
7485 Obese and Overweight Women and Public Health Issues in Hillah City, Iraq

Authors: Amean A. Yasir, Zainab Kh. A. Al-Mahdi Al-Amean

Abstract:

In both developed and developing countries, obesity among women is increasing, but in different patterns and at very different speeds. It may have a negative effect on health, leading to reduced life expectancy and/or increased health problems. This research studied the age distribution among obese women, the types of overweight and obesity, and the extent of the problem of overweight/obesity and the obesity etiological factors among women in Hillah city in central Iraq. A total of 322 overweight and obese women were included in the study, those women were randomly selected. The Body Mass Index was used as indicator for overweight/ obesity. The incidence of overweight/obesity among age groups were estimated, the etiology factors included genetic, environmental, genetic/environmental and endocrine disease. The overweight and obese women were screened for incidence of infection and/or diseases. The study found that the prevalence of 322 overweight and obese women in Hillah city in central Iraq was 19.25% and 80.78%, respectively. The obese women types were recorded based on BMI and WHO classification as class-1 obesity (29.81%), class-2 obesity (24.22%) and class-3 obesity (26.70%), the result was discrepancy non-significant, P value < 0.05. The incidence of overweight in women was high among those aged 20-29 years (90.32%), 6.45% aged 30-39 years old and 3.22% among ≥ 60 years old, while the incidence of obesity was 20.38% for those in the age group 20-29 years, 17.30% were 30-39 years, 23.84% were 40-49 years, 16.92% were 50-59 years group and 21.53% were ≥ 60 years age group. These results confirm that the age can be considered as a significant factor for obesity types (P value < 0.0001). The result also showed that the both genetic factors and environmental factors were responsible for incidents of overweight or obesity (84.78%) p value < 0.0001. The results also recorded cases of different repeated infections (skin infection, recurrent UTI and influenza), cancer, gallstones, high blood pressure, type 2 diabetes, and infertility. Weight stigma and bias generally refers to negative attitudes; Obesity can affect quality of life, and the results of this study recorded depression among overweight or obese women. This can lead to sexual problems, shame and guilt, social isolation and reduced work performance. Overweight and Obesity are real problems among women of all age groups and is associated with the risk of diseases and infection and negatively affects quality of life. This result warrants further studies into the prevalence of obesity among women in Hillah City in central Iraq and the immune response of obese women.

Keywords: Obesity, overweight, Iraq, body mass index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
7484 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: Big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
7483 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
7482 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

Authors: Ashish Saini, A.K. Saxena

Abstract:

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
7481 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
7480 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
7479 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
7478 Automatic Real-Patient Medical Data De-Identification for Research Purposes

Authors: Petr Vcelak, Jana Kleckova

Abstract:

Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.

Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
7477 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
7476 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
7475 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
7474 Identification of PIP Aquaporin Genes from Wheat

Authors: Sh. A. Yousif, M. Bhave

Abstract:

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Keywords: Aquaporins, homeologues, PIP, wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
7473 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
7472 Phenotypic and Genetic Parameters of Pre-Weaning Growth Traits in Gentile di Puglia Lambs

Authors: M. Selvaggi, F. Pinto, A. R. Pesce Delfino, A. Vicenti, C. Dario

Abstract:

Data from 1731 Gentile di Puglia lambs, sired by 65 rams over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered growth traits were: birth weight (BW), weight at 30 days of age (W30) and average daily gain from birth to 30 days of age (DG). Year of birth, sex of lamb, type of birth (single or twin), dam age at lambing and farm were significant sources of variation for all the considered growth traits. The average lamb weights were 3.85±0.16 kg at birth, 9.57±0.91 kg at 30 days of age and the average daily gain was 191±14 g. Estimates of heritability were 0.33±0.05, 0.41±0.06 and 0.16±0.05 respectively for the same traits. These values suggest there is a good opportunity to improve Gentile di Puglia lambs by selecting animals for growth traits.

Keywords: heritability estimate, growth traits, lambs, Gentile diPuglia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
7471 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

Authors: M. Mohebbi, K. Shakeri

Abstract:

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
7470 Steganalysis of Data Hiding via Halftoning and Coordinate Projection

Authors: Woong Hee Kim, Ilhwan Park

Abstract:

Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.

Keywords: Steganography, steganalysis, digital halftoning, data hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
7469 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract:

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
7468 Biological Data Integration using SOA

Authors: Noura Meshaan Al-Otaibi, Amin Yousef Noaman

Abstract:

Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. This research suggests the use of Service Oriented Architecture (SOA) to integrate biological data from different data sources. This work shows SOA will solve the problems that facing integration process and if the biologist scientists can access the biological data in easier way. There are several methods to implement SOA but web service is the most popular method. The Microsoft .Net Framework used to implement proposed architecture.

Keywords: Bioinformatics, Biological data, Data Integration, SOA and Web Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
7467 STATISTICA Software: A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, P. Ranjetha

Abstract:

Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.

Keywords: Data Mining, STATISTICA Data Miner, Text Miner, Enterprise Server, Classification, Association, Clustering, Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
7466 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek

Abstract:

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
7465 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: Communication, computer network, data collection, probe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
7464 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: Data mining, fuzzy sets, linguistic summarization, patent data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
7463 Metadata Update Mechanism Improvements in Data Grid

Authors: S. Farokhzad, M. Reza Salehnamadi

Abstract:

Grid environments include aggregation of geographical distributed resources. Grid is put forward in three types of computational, data and storage. This paper presents a research on data grid. Data grid is used for covering and securing accessibility to data from among many heterogeneous sources. Users are not worry on the place where data is located in it, provided that, they should get access to the data. Metadata is used for getting access to data in data grid. Presently, application metadata catalogue and SRB middle-ware package are used in data grids for management of metadata. At this paper, possibility of updating, streamlining and searching is provided simultaneously and rapidly through classified table of preserving metadata and conversion of each table to numerous tables. Meanwhile, with regard to the specific application, the most appropriate and best division is set and determined. Concurrency of implementation of some of requests and execution of pipeline is adaptability as a result of this technique.

Keywords: Grids, data grid, metadata, update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698