Search results for: Evolutionary Computation
126 Counterpropagation Neural Network for Solving Power Flow Problem
Authors: Jayendra Krishna, Laxmi Srivastava
Abstract:
Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431125 Young’s Modulus Variability: Influence on Masonry Vault Behavior
Authors: A. Zanaz, S. Yotte, F. Fouchal, A. Chateauneuf
Abstract:
This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode corresponds to the four-hinge mechanism. Based on this consideration, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation. A relationship linking the vault bearing capacity to the voussoirs modulus variation is proposed. The most probable failure mechanisms, in addition to that observed in the deterministic case, are identified for each variability level as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of variability, while the number of other mechanisms and their probability of occurrence increases with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young’s modulus of the segments is proven, taking it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.Keywords: Masonry, mechanism, probability, variability, vault.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006124 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510123 Improving the Voltage Level in High Voltage Direct Current Systems by Using Modular Multilevel Converter
Authors: G. Kishor Babu, B. Madhu Kiran
Abstract:
This paper presented an intend scheme of Modular-Multilevel-Converter (MMC) levels for move towering the practical conciliation flanked by the precision and divisional competence. The whole process is standard by a Thevenin-equivalent 133-level MMC model. Firstly the computation scheme of the fundamental limit imitation time step is offered to faithfully represent each voltage level of waveforms. Secondly the earlier industrial Improved Analytic Hierarchy Process (IAHP) is adopted to integrate the relative errors of all the input electrical factors interested in one complete virtual fault on each converter level. Thirdly the stable AC and DC ephemeral condition in virtual faults effects of all the forms stabilize and curve integral stand on the standard form. Finally the optimal MMC level will be obtained by the drown curves and it will give individual weights allowing for the precision and efficiency. And the competence and potency of the scheme are validated by model on MATLAB Simulink.
Keywords: Modular multilevel converter, improved analytic hierarchy process, ac and dc transient, high voltage direct current, voltage sourced converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600122 Impact of Some Experimental Procedures on Behavioral Patterns and Physiological Traits of Rats
Authors: Amira, A. Goma, U. E. Mahrous
Abstract:
Welfare may be considered to be a subjective experience; it has a biological function that is related to the fitness and survival of the animal accordingly, researches have suggested that welfare is compromised when the animal's evolutionary fitness is reduced. This study was carried out to explain the effect of some managerial stressors as handling and restraint on behavioral patterns and biochemical parameters of rats. A total of 24 (12 males & 12 females) Sprague-Dawley rats (12 months & 150-180g) were allotted into 3 groups, handled group (4 male & 4 female), restrained group (4 male & 4 female) and control group (4 males & 4 females). The obtained results revealed that time spent feeding, drinking, movement and cage exploration frequencies increased significantly in handled rats than other groups, while lying time and licking increased significantly in restrained rats than handled and controls. Moreover, social behavior decreased in both stressed groups than control. Triglycerides were significantly increased in handled rats than other groups, while total lipid, total protein and globulin significantly increased in both treated groups than control. Corticosterone increased in restrained and handled rats than control ones. Moreover, there was an increment in packed cell volume significantly in restrained rats than others. These deducted that if we want to study the effect of stress on animal welfare it is necessary to study the effect of such stressors on animal’s behavior and physiological responses.
Keywords: Behavior, handling, restraint, rat, welfare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262121 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120120 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems
Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler
Abstract:
The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.
Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684119 Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy
Authors: H. Zare Aliabadi
Abstract:
The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.
Keywords: Gibbs free energy, converter reactors, Chemical equilibrium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566118 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks
Authors: M. Zerikat, S. Chekroun
Abstract:
This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029117 The “Ecological Approach” to GIS Implementation in Low Income Countries’ and the Role of Universities: Union of Municipalities of Joumeh Case Study
Authors: A. Iaaly, O. Jadayel, R. Jadayel
Abstract:
This paper explores the effectiveness of approaches used for the implementation of technology within central governments specifically Geographic Information Systems (GIS). It examines the extent to which various strategies to GIS implementation and its roll out to users within an organization is crucial for its long term assimilation. Depending on the contextual requirements, various implementation strategies exist spanning from the most revolutionary to the most evolutionary, which have an influence on the success of GIS projects and the realization of resulting business benefits within the central governments. This research compares between two strategies of GIS implementation within the Lebanese Municipalities. The first strategy is the “Technological Approach” which is focused on technology acquisition, overlaid on existing governmental frameworks. This approach gives minimal attention to capability building and the long term sustainability of the implemented program. The second strategy, referred to as the “Ecological Approach”, is naturally oriented to the function of the organization. This approach stresses on fostering the evolution of the program and on building the human capabilities. The Union of the Joumeh Municipalities will be presented as a case study under the “Ecological Approach” and the role of the GIS Center at the University of Balamand will be highlighted. Thus, this research contributes to the development of knowledge on technology implementation and the vital role of academia in the specific context of the Lebanese public sector so that this experience may pave the way for further applications.Keywords: Ecological Approach, GIS, low income countries, technological approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421116 A New Approach to Design an Efficient CIC Decimator Using Signed Digit Arithmetic
Authors: Vishal Awasthi, Krishna Raj
Abstract:
Any digital processing performed on a signal with larger nyquist interval requires more computation than signal processing performed on smaller nyquist interval. The sampling rate alteration generates the unwanted effects in the system such as spectral aliasing and spectral imaging during signal processing. Multirate-multistage implementation of digital filter can result a significant computational saving than single rate filter designed for sample rate conversion. In this paper, we presented an efficient cascaded integrator comb (CIC) decimation filter that perform fast down sampling using signed digit adder algorithm with compensated frequency droop that arises due to aliasing effect during the decimation process. This proposed compensated CIC decimation filter structure with a hybrid signed digit (HSD) fast adder provide an improved performance in terms of down sampling speed by 65.15% than ripple carry adder (RCA) and reduced area and power by 57.5% and 0.01 % than signed digit (SD) adder algorithms respectively.
Keywords: Sampling rate conversion, Multirate Filtering, Compensation Theory, Decimation filter, CIC filter, Redundant signed digit arithmetic, Fast adders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4892115 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects
Authors: Avishai Sintov, Roland Menassa, Amir Shapiro
Abstract:
Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.
Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678114 An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition
Authors: Halil Snopce, Ilir Spahiu, Lavdrim Elmazi
Abstract:
A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.
Keywords: generating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equations and calculus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476113 FEM Simulation of HE Blast-Fragmentation Warhead and the Calculation of Lethal Range
Authors: G. Tanapornraweekit, W. Kulsirikasem
Abstract:
This paper presents the simulation of fragmentation warhead using a hydrocode, Autodyn. The goal of this research is to determine the lethal range of such a warhead. This study investigates the lethal range of warheads with and without steel balls as preformed fragments. The results from the FE simulation, i.e. initial velocities and ejected spray angles of fragments, are further processed using an analytical approach so as to determine a fragment hit density and probability of kill of a modelled warhead. In order to simulate a plenty of preformed fragments inside a warhead, the model requires expensive computation resources. Therefore, this study attempts to model the problem in an alternative approach by considering an equivalent mass of preformed fragments to the mass of warhead casing. This approach yields approximately 7% and 20% difference of fragment velocities from the analytical results for one and two layers of preformed fragments, respectively. The lethal ranges of the simulated warheads are 42.6 m and 56.5 m for warheads with one and two layers of preformed fragments, respectively, compared to 13.85 m for a warhead without preformed fragment. These lethal ranges are based on the requirement of fragment hit density. The lethal ranges which are based on the probability of kill are 27.5 m, 61 m and 70 m for warheads with no preformed fragment, one and two layers of preformed fragments, respectively.Keywords: Lethal Range, Natural Fragment, Preformed Fragment, Warhead.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4322112 PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
Robot manipulators are highly coupled nonlinear systems, therefore real system and mathematical model of dynamics used for control system design are not same. Hence, fine-tuning of controller is always needed. For better tuning fast simulation speed is desired. Since, Matlab incorporates LAPACK to increase the speed and complexity of matrix computation, dynamics, forward and inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in such a way that all operations are matrix based which give very less simulation time. This paper compares PID parameter tuning using Genetic Algorithm, Simulated Annealing, Generalized Pattern Search (GPS) and Hybrid Search techniques. Controller performances for all these methods are compared in terms of joint space ITSE and cartesian space ISE for tracking circular and butterfly trajectories. Disturbance signal is added to check robustness of controller. GAGPS hybrid search technique is showing best results for tuning PID controller parameters in terms of ITSE and robustness.Keywords: Controller Tuning, Genetic Algorithm, Pattern Search, Robotic Controller, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3718111 Compromise Ratio Method for Decision Making under Fuzzy Environment using Fuzzy Distance Measure
Authors: Debashree Guha, Debjani Chakraborty
Abstract:
The aim of this paper is to adopt a compromise ratio (CR) methodology for fuzzy multi-attribute single-expert decision making proble. In this paper, the rating of each alternative has been described by linguistic terms, which can be expressed as triangular fuzzy numbers. The compromise ratio method for fuzzy multi-attribute single expert decision making has been considered here by taking the ranking index based on the concept that the chosen alternative should be as close as possible to the ideal solution and as far away as possible from the negative-ideal solution simultaneously. From logical point of view, the distance between two triangular fuzzy numbers also is a fuzzy number, not a crisp value. Therefore a fuzzy distance measure, which is itself a fuzzy number, has been used here to calculate the difference between two triangular fuzzy numbers. Now in this paper, with the help of this fuzzy distance measure, it has been shown that the compromise ratio is a fuzzy number and this eases the problem of the decision maker to take the decision. The computation principle and the procedure of the compromise ratio method have been described in detail in this paper. A comparative analysis of the compromise ratio method previously proposed [1] and the newly adopted method have been illustrated with two numerical examples.
Keywords: Compromise ratio method, Fuzzy multi-attributesingle-expert decision making, Fuzzy number, Linguistic variable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419110 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629109 Regionalization of IDF Curves with L-Moments for Storm Events
Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar
Abstract:
The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.
Keywords: IDF curves, L-moments, regionalization, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716108 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629107 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441106 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: Resistivity, inversion, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6077105 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method
Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar
Abstract:
Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538104 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline
Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal
Abstract:
In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4251103 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377102 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: Channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy flight distribution, optimization, improved multi–objective Firefly algorithms, Pareto optimal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158101 Formal Analysis of a Public-Key Algorithm
Authors: Markus Kaiser, Johannes Buchmann
Abstract:
In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.
Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538100 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.
Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265599 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.
Keywords: Biomass concentration, Extended Kalman Filter, Particle Filter, State estimation, Specific growth rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295698 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.
Keywords: indexing, retrieval, multimedia, graph code, graph algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44497 SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
Authors: Pepin Magnangana Zoko Goyoro, Ibrahim James Moumouni, Sroy Abouty
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).Keywords: DCT transform, OFDM, PAPR, Riemann matrix, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641