Search results for: starter sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 623

Search results for: starter sets

113 Computer Software Applicable in Rehabilitation, Cardiology and Molecular Biology

Authors: P. Kowalska, P. Gabka, K. Kamieniarz, M. Kamieniarz, W. Stryla, P. Guzik, T. Krauze

Abstract:

We have developed a computer program consisting of 6 subtests assessing the children hand dexterity applicable in the rehabilitation medicine. We have carried out a normative study on a representative sample of 285 children aged from 7 to 15 (mean age 11.3) and we have proposed clinical standards for three age groups (7-9, 9-11, 12-15 years). We have shown statistical significance of differences among the corresponding mean values of the task time completion. We have also found a strong correlation between the task time completion and the age of the subjects, as well as we have performed the test-retest reliability checks in the sample of 84 children, giving the high values of the Pearson coefficients for the dominant and non-dominant hand in the range 0.740.97 and 0.620.93, respectively. A new MATLAB-based programming tool aiming at analysis of cardiologic RR intervals and blood pressure descriptors, is worked out, too. For each set of data, ten different parameters are extracted: 2 in time domain, 4 in frequency domain and 4 in Poincaré plot analysis. In addition twelve different parameters of baroreflex sensitivity are calculated. All these data sets can be visualized in time domain together with their power spectra and Poincaré plots. If available, the respiratory oscillation curves can be also plotted for comparison. Another application processes biological data obtained from BLAST analysis.

Keywords: Biomedical data base processing, Computer software, Hand dexterity, Heart rate and blood pressure variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
112 Communicative Competence in Technical Oral Presentation: That “Magic“ Perceived by ESL Educators versus Content Experts

Authors: Ena Bhattacharyya, Zullina H. Shaari

Abstract:

Till date, English as a Second Language (ESL) educators involved in teaching language and communication to engineering students face an uphill task in developing graduate communicative competency. This challenge is accentuated by the apparent lack of English for Specific Purposes (ESP) materials for engineering students in the engineering curriculum. As such, most ESL educators are forced to play multiple roles. They don tasks such as curriculum designers, material writers and teachers with limited knowledge of the disciplinary content. Previous research indicates that prospective professional engineers should possess some sub-sets of competency: technical, linguistic oral immediacy, meta-cognitive and rhetorical explanatory competence. Another study revealed that engineering students need to be equipped with technical and linguistic oral immediacy competence. However, little is known whether these competency needs are in line with the educators- perceptions of communicative competence. This paper examines the best mix of communicative competence subsets that create the magic for engineering students in technical oral presentations. For the purpose of this study, two groups of educators were interviewed. These educators were language and communication lecturers involved in teaching a speaking course and content experts who assess students- technical oral presentations at tertiary level. The findings indicate that these two groups differ in their perceptions

Keywords: Communicative competence, Content experts, Educators, Technical Oral Presentations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
111 Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish

Authors: Justina I. R. Udotong

Abstract:

Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65mg/l of Pb, 0.85mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.

Keywords: Diagnostic enzymes, enzyme activity, heavy metals, tissues investigations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
110 Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

Authors: Fatma N. Talkhan, H. H. Abo-Assy, K. A. Soliman, Marwa M. Azzam, A. Z. E. Abdelsalam, A. S. Abdel-Razek

Abstract:

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Keywords: Bacillus thuringiensis, biological control, cry1 genes, multiplex PC, SDS- PAGE analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
109 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
108 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
107 Application of Neural Network in User Authentication for Smart Home System

Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat

Abstract:

Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.

Keywords: Neural Network, User Authentication, Smart Home, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
106 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: Catchment management, drinking water reservoir, multivariate curve resolution alternating least squares, thermal stratification, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
105 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
104 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Authors: Zeynep İltüzer Samur, Gül Tekin Temur

Abstract:

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
103 Flow Discharge Determination in Straight Compound Channels Using ANNs

Authors: A. Zahiri, A. A. Dehghani

Abstract:

Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.

Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
102 A Security Model of Voice Eavesdropping Protection over Digital Networks

Authors: Supachai Tangwongsan, Sathaporn Kassuvan

Abstract:

The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

Keywords: Computer Security, Encryption, Key Exchange, Security Model, Voice Eavesdropping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
101 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
100 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
99 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students

Authors: Robin Lok-Wang

Abstract:

The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained through a project-based course in their lifelong learning journeys. In recent years, different pedagogies of teaching including entrepreneurship, experiential and lifelong learnings as well as dream builder, etc., have been widely used for education purpose. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gain knowledge via traditional lectures, laboratory demonstration, tutorial and so on. The capabilities to identify both complex problems and its corresponding solutions in daily lives are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch it to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledges and skills they need, including essential communication, logical thinking and more importantly problem solving for their lifelong learning journey.

Keywords: Problem solving, lifelong learning, entrepreneurship, mechanical engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
98 Thermal Management of Space Power Electronics using TLM-3D

Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai

Abstract:

When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.

Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
97 Effects of Corrosion on Reinforced Concrete Beams with Silica Fume and Polypropylene Fibre

Authors: S.Shanmugam, V.G. Srisanthi, S.Ramachandran

Abstract:

Reinforced concrete has good durability and excellent structural performance. But there are cases of early deterioration due to a number of factors, one prominent factor being corrosion of steel reinforcement. The process of corrosion sets in due to ingress of moisture, oxygen and other ingredients into the body of concrete, which is unsound, permeable and absorbent. Cracks due to structural and other causes such as creep, shrinkage, etc also allow ingress of moisture and other harmful ingredients and thus accelerate the rate of corrosion. There are several interactive factors both external and internal, which lead to corrosion of reinforcement and ultimately failure of structures. Suitable addition of mineral admixture like silica fume (SF) in concrete improves the strength and durability of concrete due to considerable improvement in the microstructure of concrete composites, especially at the transition zone. Secondary reinforcement in the form of fibre is added to concrete, which provides three dimensional random reinforcement in the entire mass of concrete. Reinforced concrete beams of size 0.1 m X 0.15 m and length 1m have been cast using M 35 grade of concrete. The beams after curing process were subjected to corrosion process by impressing an external Direct Current (Galvanostatic Method) for a period of 15 days under stressed and unstressed conditions. The corroded beams were tested by applying two point loads to determine the ultimate load carrying capacity and cracking pattern and the results of specimens were compared with that of the companion specimens. Gravimetric method is used to quantify corrosion that has occurred.

Keywords: Carbonation, Corrosion, Cracking, Spalling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3091
96 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: Cascade control, dynamic braking system, DC traction motors, slip control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
95 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
94 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
93 The Problem of Reconciling the Principle of Confidentiality in Foreign Investment Arbitration with the Public Interest

Authors: Bárbara Magalhães Bravo, Cláudia Figueiras

Abstract:

The economical globalization through the liberalization of the markets and capitals boosted the economical development of the nations and the needs for sorting out the disputes arising from the foreign investment. The arbitration, for all the inherent advantages, such as swiftness, arbitrators’ specialise skills and impartiality sets a pacifier tool for the interest in account. Safeguarded the public interest, we face the problem of the confidentiality in the arbitration. The urgent development of impelling mechanisms concerning transparency, guaranty and protection of the interest in account, reveals itself urgent. Through a bibliography review, we will dense the state of art, by going through the several solutions concerning, and pointing out the most suitable. Through the jurisprudential analysis we will point out the solution for the conflict confidentiality/public interest. The transparency, inextricable from the public interest, imposes the arbitration process can be open to all citizens. Transparency rules have been considered at the UNCITRAL in attempting to conciliate the necessity of publicity and the public interest, however still insufficient. The arbitration of foreign investment carries consequences to the citizens of the State. Articulating mechanisms between the arbitral procedures secrecy and the public interest should be adopted. The arbitration of foreign investment, being a tertius genius between the international arbitration and the administrative arbitration would claim its own regulation in each and every States where the confidentiality rules and its exceptions could be identified. One should enquiry where the limit of the citizens’ individual rights protection and the public interest should give way to the principle of transparency

Keywords: Arbitration, foreign investment, transparency, confidentiality, international centre for settlement of investment disputes UNCITRAL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
92 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System

Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi

Abstract:

Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.

Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
91 Measuring the Structural Similarity of Web-based Documents: A Novel Approach

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian

Abstract:

Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
90 Stochastic Risk Analysis Framework for Building Construction Projects

Authors: Abdulkadir Abu Lawal

Abstract:

The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.

Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
89 An Activity Based Trajectory Search Approach

Authors: Mohamed Mahmoud Hasan, Hoda M. O. Mokhtar

Abstract:

With the gigantic increment in portable applications use and the spread of positioning and location-aware technologies that we are seeing today, new procedures and methodologies for location-based strategies are required. Location recommendation is one of the highly demanded location-aware applications uniquely with the wide accessibility of social network applications that are location-aware including Facebook check-ins, Foursquare, and others. In this paper, we aim to present a new methodology for location recommendation. The proposed approach coordinates customary spatial traits alongside other essential components including shortest distance, and user interests. We also present another idea namely, "activity trajectory" that represents trajectory that fulfills the set of activities that the user is intrigued to do. The approach dispatched acquaints the related distance value to select trajectory(ies) with minimum cost value (distance) and spatial-area to prune unneeded directions. The proposed calculation utilizes the idea of movement direction to prescribe most comparable N-trajectory(ies) that matches the client's required action design with least voyaging separation. To upgrade the execution of the proposed approach, parallel handling is applied through the employment of a MapReduce based approach. Experiments taking into account genuine information sets were built up and tested for assessing the proposed approach. The exhibited tests indicate how the proposed approach beets different strategies giving better precision and run time.

Keywords: Location-based recommendation, map-reduce, recommendation system, trajectory search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
88 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers

Authors: Chen Bingru

Abstract:

This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.

Keywords: Duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
87 Analysis of a Coupled Hydro-Sedimentological Numerical Model for the Tombolo of GIENS

Authors: Yves Lacroix, Van Van Than, Didier Leandri, Pierre Liardet

Abstract:

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydrosedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
86 Factors Affecting Employee Decision Making in an AI Environment

Authors: Yogesh C. Sharma, A. Seetharaman

Abstract:

The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.

Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
85 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
84 Online Optic Disk Segmentation Using Fractals

Authors: Srinivasan Aruchamy, Partha Bhattacharjee, Goutam Sanyal

Abstract:

Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future.

Keywords: Color retinal fundus images, Diabetic retinopathy, Fluorescein angiography retinal fundus images, Fractal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513