Search results for: Arabic data mining
7151 Video Data Mining based on Information Fusion for Tamper Detection
Authors: Girija Chetty, Renuka Biswas
Abstract:
In this paper, we propose novel algorithmic models based on information fusion and feature transformation in crossmodal subspace for different types of residue features extracted from several intra-frame and inter-frame pixel sub-blocks in video sequences for detecting digital video tampering or forgery. An evaluation of proposed residue features – the noise residue features and the quantization features, their transformation in cross-modal subspace, and their multimodal fusion, for emulated copy-move tamper scenario shows a significant improvement in tamper detection accuracy as compared to single mode features without transformation in cross-modal subspace.Keywords: image tamper detection, digital forensics, correlation features image fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18997150 An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits
Authors: Ahmad T. Al-Taani
Abstract:
In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.Keywords: Digits Recognition, Pattern Recognition, FeatureExtraction, Structural Primitives, Document Processing, Handwritten Recognition, Primitives Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26427149 Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac O. Asante, Yushi Jiang, Hailin Tao
Abstract:
Livestreaming marketing, the new electronic commerce element, has become an optional marketing channel following the COVID-19 pandemic, and many sellers are leveraging the features presented by livestreaming to increase sales. This study was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during livestreaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study presents a way of measuring interactions in livestreaming commerce and proposes a way to manually gather data on consumer behaviors in livestreaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.
Keywords: Livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487148 Analyzing Factors Impacting COVID-19 Vaccination Rates
Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj
Abstract:
Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated their populations within their first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. Results of these correlations identify countries with stronger Health indicators such as lower mortality rates, lower age-dependency ratios, and higher rates of immunization to other diseases display higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.
Keywords: Data mining, Pearson Correlation, COVID-19, vaccination rates, hesitancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3457147 Does Practice Reflect Theory? An Exploratory Study of a Successful Knowledge Management System
Authors: Janet L. Kourik, Peter E. Maher
Abstract:
To investigate the correspondence of theory and practice, a successfully implemented Knowledge Management System (KMS) is explored through the lens of Alavi and Leidner-s proposed KMS framework for the analysis of an information system in knowledge management (Framework-AISKM). The applied KMS system was designed to manage curricular knowledge in a distributed university environment. The motivation for the KMS is discussed along with the types of knowledge necessary in an academic setting. Elements of the KMS involved in all phases of capturing and disseminating knowledge are described. As the KMS matures the resulting data stores form the precursor to and the potential for knowledge mining. The findings from this exploratory study indicate substantial correspondence between the successful KMS and the theory-based framework providing provisional confirmation for the framework while suggesting factors that contributed to the system-s success. Avenues for future work are described.Keywords: Applied KMS, education, knowledge management (KM), KM framework, knowledge management system (KMS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10377146 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks
Authors: Maria E. Manioudaki, Panayiota Poirazi
Abstract:
Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.
Keywords: gene modules, artificial neural networks, yeast, stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14657145 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22057144 Usability Guidelines for Arab E-government Websites
Authors: Omyma Al Osaimi, Asma AlSumait
Abstract:
The website developer and designer should follow usability guidelines to provide a user-friendly interface. Many guidelines and heuristics have been developed by previous studies to help both the developer and designer in this task, but E-government websites are special cases that require specialized guidelines. This paper introduces a set of 18 guidelines for evaluating the usability of e-government websites in general and Arabic e-government websites specifically, along with a check list of how to apply them. The validity and effectiveness of these guidelines were evaluated against a variety of user characteristics. The results indicated that the proposed set of guidelines can be used to identify qualitative similarities and differences with user testing and that the new set is best suited for evaluating general and e-governmental usability.
Keywords: E-government, Human Computer Interaction, Usability Evaluation, Usability Guidelines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29697143 Using Pattern Search Methods for Minimizing Clustering Problems
Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar
Abstract:
Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16407142 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.
Keywords: Big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21437141 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK
Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts
Abstract:
The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.
Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12417140 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13157139 Development of a Technology Assessment Model by Patents and Customers' Review Data
Authors: Kisik Song, Sungjoo Lee
Abstract:
Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.Keywords: Technology assessment, patents, citation information, opinion mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9927138 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17057137 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17457136 A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community
Authors: Heejin Yun, Juanjuan Zang
Abstract:
This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.
Keywords: Nostalgia, cultural memory, data mining, online community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10437135 The Effect of Different Compression Schemes on Speech Signals
Authors: Jalal Karam, Raed Saad
Abstract:
This paper studies the effect of different compression constraints and schemes presented in a new and flexible paradigm to achieve high compression ratios and acceptable signal to noise ratios of Arabic speech signals. Compression parameters are computed for variable frame sizes of a level 5 to 7 Discrete Wavelet Transform (DWT) representation of the signals for different analyzing mother wavelet functions. Results are obtained and compared for Global threshold and level dependent threshold techniques. The results obtained also include comparisons with Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error.Keywords: Speech Compression, Wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17347134 Morphological and Syntactic Meaning: An Interactive Crossword Puzzle Approach
Authors: Ibrahim Garba
Abstract:
This research involved the use of word distributions and morphological knowledge by speakers of Arabic learning English connected different allomorphs in order to realize how the morphology and syntax of English gives meaning through using interactive crossword puzzles (ICP). Fifteen chapters covered with a class of nine learners over an academic year of an intensive English program were reviewed using the ICP. Learners were questioned about how the use of this gaming element enhanced and motivated their learning of English. The findings were positive indicating a successful implementation of ICP both at creational and user levels. This indicated a positive role technology had when learning and teaching English through adopting an interactive gaming element for learning English.Keywords: Distribution, gaming, interactive-crossword-puzzle, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23907133 Fuzzy Clustering Analysis in Real Estate Companies in China
Authors: Jianfeng Li, Feng Jin, Xiaoyu Yang
Abstract:
This paper applies fuzzy clustering algorithm in classifying real estate companies in China according to some general financial indexes, such as income per share, share accumulation fund, net profit margins, weighted net assets yield and shareholders' equity. By constructing and normalizing initial partition matrix, getting fuzzy similar matrix with Minkowski metric and gaining the transitive closure, the dynamic fuzzy clustering analysis for real estate companies is shown clearly that different clustered result change gradually with the threshold reducing, and then, it-s shown there is the similar relationship with the prices of those companies in stock market. In this way, it-s great valuable in contrasting the real estate companies- financial condition in order to grasp some good chances of investment, and so on.
Keywords: Fuzzy clustering algorithm, data mining, real estate company, financial analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19177132 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42227131 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27917130 Models of State Organization and Influence over Collective Identity and Nationalism in Spain
Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel
Abstract:
The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16887129 Automatic Real-Patient Medical Data De-Identification for Research Purposes
Authors: Petr Vcelak, Jana Kleckova
Abstract:
Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16427128 A New Pattern for Handwritten Persian/Arabic Digit Recognition
Authors: A. Harifi, A. Aghagolzadeh
Abstract:
The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.
Keywords: Pattern recognition, Persian digits, NeuralNetwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16777127 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17377126 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range
Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu
Abstract:
Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12087125 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24027124 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.
Keywords: Benchmark collection, program educational objectives, student outcomes, ABET, Accreditation, machine learning, supervised multiclass classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8377123 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14567122 A Rough Sets Approach for Relevant Internet/Web Online Searching
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550