Search results for: ADBT and image processing.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2729

Search results for: ADBT and image processing.

2219 Design of Auto Exposure Unit Based On 2-Way Histogram Equalization

Authors: Junghwan Choi, Seongsoo Lee

Abstract:

Histogram equalization is often used in image enhancement, but it can be also used in auto exposure. However, conventional histogram equalization does not work well when many pixels are concentrated in a narrow luminance range.This paper proposes an auto exposure method based on 2-way histogram equalization. Two cumulative distribution functions are used, where one is from dark to bright and the other is from bright to dark. In this paper, the proposed auto exposure method is also designed and implemented for image signal processors with full-HD images.

Keywords: Histogram equalization, Auto exposure, Image signal processor, Low-cost, Full HD Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3400
2218 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: Dynamical diffraction, hologram, object image, X-ray holography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
2217 A Way of Converting Color Images to Gray Scale Ones for the Color-Blind -Applying to the Part of the Tokyo Subway Map-

Authors: Katsuhiro Narikiyo, Shota Hashikawa

Abstract:

This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images.

Keywords: Color-blind, JPEG, Monochrome image, Denoise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2216 A Dynamic RGB Intensity Based Steganography Scheme

Authors: Mandep Kaur, Surbhi Gupta, Parvinder S. Sandhu, Jagdeep Kaur

Abstract:

Steganography meaning covered writing. Steganography includes the concealment of information within computer files [1]. In other words, it is the Secret communication by hiding the existence of message. In this paper, we will refer to cover image, to indicate the images that do not yet contain a secret message, while we will refer to stego images, to indicate an image with an embedded secret message. Moreover, we will refer to the secret message as stego-message or hidden message. In this paper, we proposed a technique called RGB intensity based steganography model as RGB model is the technique used in this field to hide the data. The methods used here are based on the manipulation of the least significant bits of pixel values [3][4] or the rearrangement of colors to create least significant bit or parity bit patterns, which correspond to the message being hidden. The proposed technique attempts to overcome the problem of the sequential fashion and the use of stego-key to select the pixels.

Keywords: Steganography, Stego Image, RGB Image, Cryptography, LSB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2215 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2214 Exploring the Sources of Innovation in Food Processing SMEs of Kerala

Authors: Bhumika Gupta, Jeayaram Subramanian, Hardik Vachhrajani, Avinash Shivdas

Abstract:

Indian food processing industry is one of the largest in the world in terms of production, consumption, exports and growth opportunities. SMEs play a crucial role within this. Large manufacturing firms largely dominate innovation studies in India. Innovation sources used by SMEs are often different from that of large firms. This paper focuses on exploring various sources of innovation adopted by food processing SMEs in Kerala, South India. Outcome suggests that SMEs use various sources like suppliers, competitors, employees, government/research institutions and customers to get new ideas.

Keywords: Food processing, innovation, SMEs, sources of innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
2213 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. 

Keywords: Affine Transformation, Discrete Wavelet Transform, Radix Sort, SATS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
2212 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm

Authors: Nameer N. EL-Emam

Abstract:

In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.

Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
2211 A New Fast Skin Color Detection Technique

Authors: Tarek M. Mahmoud

Abstract:

Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.

Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4010
2210 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN

Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma

Abstract:

Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.

Keywords: Rotation, Face, Recognition, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2209 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
2208 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm

Authors: Mahkameh S. Mostafavi

Abstract:

In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.

Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2207 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
2206 An Investigation of Customers’ Perception and Attitude towards Krung Thai Bank in Thailand

Authors: Phatthanan Chaiyabut

Abstract:

The purposes of this research were to identify the perception of customers towards Krung Thai Bank’s image and to understand the customer attitude towards Krung Thai Bank’s image in Bangkok, Thailand. This research utilized quantitative approach and used questionnaire as data collection tool. A sample size of 420 respondents was selected by simple random sampling. The findings revealed that the majority of respondents received information, news, and feeds concerning the bank through televisions the most. This information channel had significantly influenced on the customers and their decisions to utilize the bank’s products and services.

From the information concerning the attitudes towards overall image of the bank, it was found that the majority respondents rated the bank’s image at the good level. The top three average attitudes included the bank’s images in supports government's monetary policies, being renowned and stable, and contributing in economical amendments and developments, with the mean average of 4.01, 3.96 and 3.81 respectively. The attitudes toward the images included a business leader in banking, marketing, and competitions. Offering prompt services, and provided appropriate servicing time were rated moderate with the attitudes of 3.36 and 3.30 respectively.

Keywords: Attitude, Image, Krung Thai bank, Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2205 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.

Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2204 Novel Security Strategy for Real Time Digital Videos

Authors: Prakash Devale, R. S. Prasad, Amol Dhumane, Pritesh Patil

Abstract:

Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.

Keywords: Data Hiding, Digital Watermarking, video coding H.264, Rate Control, Block DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
2203 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
2202 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis

Abstract:

Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.

Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
2201 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain

Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine

Abstract:

In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
2200 Genetic-Based Multi Resolution Noisy Color Image Segmentation

Authors: Raghad Jawad Ahmed

Abstract:

Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.

Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
2199 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.

Keywords: DWT, contourlet transform, digital image watermarking, copyright protection, geometric attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
2198 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in complimentary metal-oxide semiconductor (CMOS) image sensors have resulted in exponential increases in the amount of data that need to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
2197 Investigating the Influence of Porosity on Thermal and Mechanical Properties of a C/C Composite Using Image Based FE Modelling

Authors: Abdulrahman A. Alghamdi, Paul M. Mummery, Mohammad A. Sheikh

Abstract:

In this paper, 3D image based composite unit cell is constructed from high resolution tomographic images. Through-thickness thermal diffusivity and in-plane Young’s modulus are predicted for the composite unit cell. The accuracy of the image based composite unit cell is tested by comparing its results with the experimental results obtained from laser flash and tensile test. The FE predictions are in close agreement with experimental results. Through-thickness thermal diffusivity and in-plane Young’s modulus of a virgin C/C composite are predicted by replacing the properties of air (porosity) with the properties of carbon matrix. The effect of porosity was found to be more profound on thermal diffusivity than young’s modulus.

Keywords: Porosity, C/C composite, image based FE modelling, CMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
2196 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: Features extraction, image segmentation, medical images, tumour detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
2195 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
2194 Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization

Authors: H. B. Kekre, Tanuja K. Sarode, Bhakti Raul

Abstract:

In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre-s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial images of varied nature demonstrate that this approach does not result in over segmentation or under segmentation. The vector quantization seems to give far better results as compared to conventional on-the-fly watershed algorithm.

Keywords: Image Segmentation, , Codebook, Codevector, data compression, Encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
2193 Modelling Peer Group Dieting Behaviour

Authors: M. J. Cunha

Abstract:

The aim of this paper is to understand how peers can influence adolescent girls- dieting behaviour and their body image. Departing from imitation and social learning theories, we study whether adolescent girls tend to model their peer group dieting behaviours, thus influencing their body image construction. Our study was conducted through an enquiry applied to a cluster sample of 466 adolescent high school girls in Lisbon city public schools. Our main findings point to an association between girls- and peers- dieting behaviours, thus reinforcing the modelling hypothesis.

Keywords: Modelling, Diet, Body image, Adolescent girls, Peer group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2192 Hot-Spot Blob Merging for Real-Time Image Segmentation

Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda

Abstract:

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
2191 Ontologies for Complex Event Processing

Authors: Irina Astrova, Arne Koschel, Jan Lukanowski, Jose Luis Munoz Martinez, Valerij Procenko, Marc Schaaf

Abstract:

In this paper, five ontologies are described, which include the event concepts. The paper provides an overview and comparison of existing event models. The main criteria for comparison are that there should be possibilities to model events with stretch in the time and location and participation of objects; however, there are other factors that should be taken into account as well. The paper also shows an example of using ontologies in complex event processing.

Keywords: Ontologies, events, complex event processing (CEP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
2190 Performance of Histogram-Based Skin Colour Segmentation for Arms Detection in Human Motion Analysis Application

Authors: Rosalyn R. Porle, Ali Chekima, Farrah Wong, G. Sainarayanan

Abstract:

Arms detection is one of the fundamental problems in human motion analysis application. The arms are considered as the most challenging body part to be detected since its pose and speed varies in image sequences. Moreover, the arms are usually occluded with other body parts such as the head and torso. In this paper, histogram-based skin colour segmentation is proposed to detect the arms in image sequences. Six different colour spaces namely RGB, rgb, HSI, TSL, SCT and CIELAB are evaluated to determine the best colour space for this segmentation procedure. The evaluation is divided into three categories, which are single colour component, colour without luminance and colour with luminance. The performance is measured using True Positive (TP) and True Negative (TN) on 250 images with manual ground truth. The best colour is selected based on the highest TN value followed by the highest TP value.

Keywords: image colour analysis, image motion analysis, skin, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569