Search results for: annual energy efficiency.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4949

Search results for: annual energy efficiency.

4469 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: Aircraft de-icing system, electro-thermal, in-flight icing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4581
4468 Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

Authors: Hossein Lotfizadeh, André McDonald, Amit Kumar

Abstract:

Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO2) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO2 emissions, and increase CO2 mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO2 mitigation.

Keywords: CO2 emissions, CO2 mitigation, natural gas consumption, solar water heating system, tankless water heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
4467 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation–Effect of Entrainer

Authors: Aleksandra Yu. Sazonova, Valentina M. Raeva

Abstract:

The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.

Keywords: Acetonitrile, entrainer, extractive distillation, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7148
4466 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters

Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud

Abstract:

Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.

Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
4465 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
4464 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: Cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
4463 Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little

Abstract:

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Keywords: By-products, inhibitory effect, mixture, photocatalytic oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
4462 Optimization of GAMM Francis Turbine Runner

Authors: Sh. Derakhshan, A. Mostafavi

Abstract:

Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.

Keywords: Francis Turbine, Runner, Optimization, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3314
4461 The Reconstruction New Agegraphic and Gauss- Bonnet Dark Energy Models with a Special Power Law Expasion

Authors: V. Fayaz , F. Felegary

Abstract:

Here, in this work we study correspondence the energy density New agegraphic and the energy density Gauss- Bonnet models in flat universe. We reconstruct Λ  and Λ ω for them with 0 ( ) 0 h a t = a t .

Keywords: dark energy, new age graphic, gauss- bonnet, late time universe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
4460 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4031
4459 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach

Authors: D. A. Farinde

Abstract:

One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.

Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
4458 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: Photovoltaic cell, natural convection, heat sink, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
4457 Harmonizing Spatial Plans: A Methodology to Integrate Sustainable Mobility and Energy Plans to Promote Resilient City Planning

Authors: B. Sanchez, D. Zambrana-Vasquez, J. Fresner, C. Krenn, F. Morea, L. Mercatelli

Abstract:

Local administrations are facing established targets on sustainable development from different disciplines at the heart of different city departments. Nevertheless, some of these targets, such as CO2 reduction, relate to two or more disciplines, as it is the case of sustainable mobility and energy plans (SUMP & SECAP/SEAP). This opens up the possibility to efficiently cooperate among different city departments and to create and develop harmonized spatial plans by using available resources and together achieving more ambitious goals in cities. The steps of the harmonization processes developed result in the identification of areas to achieve common strategic objectives. Harmonization, in other words, helps different departments in local authorities to work together and optimize the use or resources by sharing the same vision, involving key stakeholders, and promoting common data assessment to better optimize the resources. A methodology to promote resilient city planning via the harmonization of sustainable mobility and energy plans is presented in this paper. In order to validate the proposed methodology, a representative city engaged in an innovation process in efficient spatial planning is used as a case study. The harmonization process of sustainable mobility and energy plans covers identifying matching targets between different fields, developing different spatial plans with dual benefit and common indicators guaranteeing the continuous improvement of the harmonized plans. The proposed methodology supports local administrations in consistent spatial planning, considering both energy efficiency and sustainable mobility. Thus, municipalities can use their human and economic resources efficiently. This guarantees an efficient upgrade of land use plans integrating energy and mobility aspects in order to achieve sustainability targets, as well as to improve the wellbeing of its citizens.

Keywords: Harmonized planning, spatial planning, sustainable energy, sustainable mobility, SECAP, SUMP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
4456 Effects of Channel Bed Slope on Energy Dissipation of Different Types of Piano Key Weir

Authors: Munendra Kumar, Deepak Singh

Abstract:

The present investigation aims to study the effect of channel bed slopes on energy dissipation across the different types of Piano Key Weir (PK weir or PKW) under the free-flow conditions in rigid rectangular channels. To this end, three different types (type-A, type-B, and type-C) of PKW models were tested and examined. To document and quantify this experimental investigation, a total of 270 tests were performed, including detailed observations of the flow field. The results show that the energy dissipation of all PKW models increases with the bed slopes and decreases with increasing the discharge over the weirs. In addition, the energy dissipation over the PKW varies significantly with the geometry of the weir. The type-A PKW has shown the highest energy dissipation than the other PKWs. As the bottom slope changed from Sb = 0% to 1.25%, the energy dissipation increased by about 8.5%, 9.1%, and 10.55% for type-A, type-B, and type-C, respectively.

Keywords: Piano key weir, bed slope, energy dissipation across PKW, free overfalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
4455 Islamic Corporate Social Responsibility, Corporate Reputation and Performance

Authors: Roshayani Arshad, Suaini Othman, Rohana Othman

Abstract:

This study examines the effect of Islamic Corporate Social Responsibility disclosure and on corporate reputation as well as performance. These relationships are examined based on content analysis of of annual reports of 17 Islamic banks in Malaysia for 2008, 2009 and 2010. Results of this study provide evidence that CSR activities communicated in corporate annual reports are significantly positively related with corporate reputation as well as firm performance. These results indicate that CSR activities and disclosure from Islamic perspectives are equally important business strategies in creating continuous superior performance for organisations. In addition, it also highlights that organisations need to develop a stakeholder orientation particularly in an environment of increasing pressure from jurisdictions dominated by Islamic stakeholders on organisations engaging in Islamic products to increase their social responsibilities from the Islamic perspectives.

Keywords: Islamic Corporate Social Responsibility, Corporate Reputation, Firm Performance, Islamic Banks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5600
4454 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: Solar energy, heliostat, wireless communication, intelligent node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
4453 Viability Analysis of the Use of Solar Energy for Water Heating in Brazil

Authors: E. T. L. Cöuras Ford, V. A. C.Vale, J. U. L Mendes

Abstract:

The sun is an inexhaustible source and harness its potential both for heating and power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on earth, only indirectly, since it is responsible for virtually all other energy sources, such as generating source of evaporation of the water cycle, allowing the impoundment and the consequent generation of electricity (hydroelectric power); winds are caused by atmospheric induction caused by large scale solar radiation; petroleum, coal and natural gas were generated from waste plants and animals that originally derived energy required for their development of solar radiation. This paper presents a study on the feasibility of using solar energy for water heating in homes. A simplified methodology developed for formulation of solar heating operation model of water in alternative systems of solar energy in Brazil, and compared it to that in the international market. Across this research, it was possible to create new paradigms for alternative applications to the use of solar energy.

Keywords: Solar energy, solar heating, solar project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
4452 Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries

Authors: H. H. Goh, K. C. Goh, W. N. Z. S. Wan Sukri, Q. S. Chua, S. W. Lee, B. C. Kok

Abstract:

Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff.

Keywords: ASEAN RES, Renewable Energy, RES Policies, RES Potential, RES Utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
4451 Queen-bee Algorithm for Energy Efficient Clusters in Wireless Sensor Networks

Authors: Z. Pooranian, A. Barati, A. Movaghar

Abstract:

Wireless sensor networks include small nodes which have sensing ability; calculation and connection extend themselves everywhere soon. Such networks have source limitation on connection, calculation and energy consumption. So, since the nodes have limited energy in sensor networks, the optimized energy consumption in these networks is of more importance and has created many challenges. The previous works have shown that by organizing the network nodes in a number of clusters, the energy consumption could be reduced considerably. So the lifetime of the network would be increased. In this paper, we used the Queen-bee algorithm to create energy efficient clusters in wireless sensor networks. The Queen-bee (QB) is similar to nature in that the queen-bee plays a major role in reproduction process. The QB is simulated with J-sim simulator. The results of the simulation showed that the clustering by the QB algorithm decreases the energy consumption with regard to the other existing algorithms and increases the lifetime of the network.

Keywords: Queen-bee, sensor network, energy efficient, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
4450 The Effect of Corporate Diversification on the Profitability of the Financial Services Sector in Nigeria

Authors: Ugwuanyi, Georgina Obinne, Ugwu, Joy Nonye

Abstract:

This paper examines the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The study relied on historic accounting data generated from financial (annual) reports and accounts of sampled banks between the period 1998 and 2007 (a ten-year period). A regression equation was formulated, in line with previous studies to shed light on the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The results of the regression analysis revealed that diversification impacts strongly on banks profitability. Conclusively the paper produces strong evidence to assert that diversification impacts positively and significantly on banks profitability because among other things such diversified banks can pool their internally generated funds and allocate them properly.

Keywords: Diversification, firm size, operational efficiency, profitability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
4449 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: Energy efficient, embodied energy, energy performance index, building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
4448 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
4447 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: Air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
4446 Studying Effects of Alternative Biodiesel Fuel in Performance and Pollutants of Diesel Engines

Authors: Shakila Motamedi, Seyed Azizollah Ghotb, Fatemeh Torfi, Najaf Hedayat

Abstract:

Since injection engines have a considerable portion, in consumption of energy and environmental pollution, using an alternative source of energy with lower pollutant effects in this regard is necessary. Biodiesel fuel is a suitable alternative for gasoline in diesel engines. In this research the property of biodiesel, the function and the pollution effects of diesel engine, when using 100% biodiesel, using 100% gasoline and mixing ratio of both fuels for comparing them, have been investigated. The researches have shown, using biodiesel fuel in prevalent diesel engine, will reduce the pollutants such as Co, half burned carbohydrate and suspended particles and a little increase in oxidation will achieve while power consumption, particularly fuel and thermal efficiency of diesel fuel has the same.

Keywords: Biodiesel, Diesel Engine, Environment, Gasoline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
4445 Implementation of Feed-in Tariffs into Multi-Energy Systems

Authors: M. Schulze, P. Crespo Del Granado

Abstract:

This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.

Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
4444 Thermodynamic Performance of Regenerative Organic Rankine Cycles

Authors: Kyoung Hoon Kim

Abstract:

ORC (Organic Rankine Cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC with regeneration is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the turbine inlet pressure on the characteristics of the system such as net work production, heat input, volumetric flow rate per 1 MW of net work and quality of the working fluid at turbine exit as well as thermal efficiency. Results show that for a given source the thermal efficiency generally increases with increasing of the turbine inlet pressure however has optimal condition for working fluids of low critical pressure such as iso-pentane or n-pentane.

Keywords: low-grade energy source, organic Rankine cycle(ORC), regeneration, Patel-Teja equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
4443 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
4442 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
4441 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities

Authors: Veljko Jeremic, Milica Kostic-Stankovic, Aleksandar Markovic, Milan Martic

Abstract:

Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States; the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.

Keywords: Evaluating Efficiency, Distance Based Analysis, Ranking of Universities, ARWU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
4440 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712