Search results for: animage retrieval and content-based image retrieval.
1242 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration
Authors: Asmatullah Chaudhry, Anwar M. Mirza
Abstract:
We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.
Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23561241 Object Motion Tracking Based On Color Detection for Android Devices
Authors: Zacharenia I. Garofalaki, John T. Amorginos, John N. Ellinas
Abstract:
This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.Keywords: Android, Arduino Uno, Image processing, Object motion detection, OpenCV library.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45641240 A Step-wise Zoom Technique for Exploring Image-based Virtual Reality Applications
Authors: D. R. Awang Rambli, S. Sulaiman, M.Y. Nayan, A.R. Asoruddin
Abstract:
Existing image-based virtual reality applications allow users to view image-based 3D virtual environment in a more interactive manner. User could “walkthrough"; looks left, right, up and down and even zoom into objects in these virtual worlds of images. However what the user sees during a “zoom in" is just a close-up view of the same image which was taken from a distant. Thus, this does not give the user an accurate view of the object from the actual distance. In this paper, a simple technique for zooming in an object in a virtual scene is presented. The technique is based on the 'hotspot' concept in existing application. Instead of navigation between two different locations, the hotspots are used to focus into an object in the scene. For each object, several hotspots are created. A different picture is taken for each hotspot. Each consecutive hotspot created will take the user closer to the object. This will provide the user with a correct of view of the object based on his proximity to the object. Implementation issues and the relevance of this technique in potential application areas are highlighted.Keywords: Hotspots, image-based VR, camera zooms, virtualreality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311239 An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising
Authors: D.Gnanadurai, V.Sadasivam
Abstract:
This frame work describes a computationally more efficient and adaptive threshold estimation method for image denoising in the wavelet domain based on Generalized Gaussian Distribution (GGD) modeling of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analysing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by the proposed method. Experimental results on several test images by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image denoising, we have compared this with various denoising methods like wiener filter, Average filter, VisuShrink and BayesShrink.Keywords: Wavelet Transform, Gaussian Noise, ImageDenoising, Filter Banks and Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29071238 EZW Coding System with Artificial Neural Networks
Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar
Abstract:
Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331237 Entropy Based Data Hiding for Document Images
Authors: Swetha Kurup, Sridhar G., Sridhar V.
Abstract:
In this paper we present a novel technique for data hiding in binary document images. We use the concept of entropy in order to identify document specific least distortive areas throughout the binary document image. The document image is treated as any other image and the proposed method utilizes the standard document characteristics for the embedding process. Proposed method minimizes perceptual distortion due to embedding and allows watermark extraction without the requirement of any side information at the decoder end.Keywords: Entropy, Steganography, Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15301236 A New Image Encryption Approach using Combinational Permutation Techniques
Authors: A. Mitra, Y. V. Subba Rao, S. R. M. Prasanna
Abstract:
This paper proposes a new approach for image encryption using a combination of different permutation techniques. The main idea behind the present work is that an image can be viewed as an arrangement of bits, pixels and blocks. The intelligible information present in an image is due to the correlations among the bits, pixels and blocks in a given arrangement. This perceivable information can be reduced by decreasing the correlation among the bits, pixels and blocks using certain permutation techniques. This paper presents an approach for a random combination of the aforementioned permutations for image encryption. From the results, it is observed that the permutation of bits is effective in significantly reducing the correlation thereby decreasing the perceptual information, whereas the permutation of pixels and blocks are good at producing higher level security compared to bit permutation. A random combination method employing all the three techniques thus is observed to be useful for tactical security applications, where protection is needed only against a casual observer.Keywords: Encryption, Permutation, Good key, Combinationalpermutation, Pseudo random index generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311235 A Novel Architecture for Wavelet based Image Fusion
Authors: Susmitha Vekkot, Pancham Shukla
Abstract:
In this paper, we focus on the fusion of images from different sources using multiresolution wavelet transforms. Based on reviews of popular image fusion techniques used in data analysis, different pixel and energy based methods are experimented. A novel architecture with a hybrid algorithm is proposed which applies pixel based maximum selection rule to low frequency approximations and filter mask based fusion to high frequency details of wavelet decomposition. The key feature of hybrid architecture is the combination of advantages of pixel and region based fusion in a single image which can help the development of sophisticated algorithms enhancing the edges and structural details. A Graphical User Interface is developed for image fusion to make the research outcomes available to the end user. To utilize GUI capabilities for medical, industrial and commercial activities without MATLAB installation, a standalone executable application is also developed using Matlab Compiler Runtime.Keywords: Filter mask, GUI, hybrid architecture, image fusion, Matlab Compiler Runtime, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23881234 A Visual Cryptography and Statistics Based Method for Ownership Identification of Digital Images
Authors: Ching-Sheng Hsu, Young-Chang Hou
Abstract:
In this paper, a novel copyright protection scheme for digital images based on Visual Cryptography and Statistics is proposed. In our scheme, the theories and properties of sampling distribution of means and visual cryptography are employed to achieve the requirements of robustness and security. Our method does not need to alter the original image and can identify the ownership without resorting to the original image. Besides, our method allows multiple watermarks to be registered for a single host image without causing any damage to other hidden watermarks. Moreover, it is also possible for our scheme to cast a larger watermark into a smaller host image. Finally, experimental results will show the robustness of our scheme against several common attacks.
Keywords: Copyright protection, digital watermarking, samplingdistribution, visual cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831233 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient
Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma
Abstract:
One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.
Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521232 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171231 A New Approach to Face Recognition Using Dual Dimension Reduction
Authors: M. Almas Anjum, M. Younus Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16861230 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver and Pancreatic Grafts
Authors: C. S. Mammas, A. Lazaris, A. S. Mamma-Graham, G. Kostopanagiotou, C. Lemonidou, J. Mantas, E. Patsouris
Abstract:
Introduction: The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the remote evaluation of the grafts. It has been estimated that even in well-organized transplant systems an average of 8% to 14% of the grafts (G) that arrive at the recipient hospitals may be considered as diseased, injured, damaged or improper for transplantation. Digital microscopy adds information on a microscopic level about the grafts in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G, will arrive at the recipient hospital for implantation. Aim: Ergonomics of Digital Microscopy (DM) based on virtual slides, on Telemedicine Systems (TS) for Tele-Pathological (TPE) evaluation of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of Renal Graft (RG), Liver Graft (LG) and Pancreatic Graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying Virtual Slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included: a. Development of an OTE-TS similar Experimental Telemedicine System (Exp.-TS), b. Simulation of the integration of TS with the VS based microscopic TPE of RG, LG and PG applying DM. Simulation of the DM based TPE was performed by 2 specialists on a total of 238 human Renal Graft (RG), 172 Liver Graft (LG) and 108 Pancreatic Graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to diagnose accurately the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a Desktop, followed by the ES of the applied Exp.-TS. Tablet and Mobile-Phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and aware ness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval; seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.Keywords: Organ Transplantation, Tele-Pathology, Digital Microscopy, Virtual Slides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981229 A Hybrid Ontology Based Approach for Ranking Documents
Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301228 A New Ridge Orientation based Method of Computation for Feature Extraction from Fingerprint Images
Authors: Jayadevan R., Jayant V. Kulkarni, Suresh N. Mali, Hemant K. Abhyankar
Abstract:
An important step in studying the statistics of fingerprint minutia features is to reliably extract minutia features from the fingerprint images. A new reliable method of computation for minutiae feature extraction from fingerprint images is presented. A fingerprint image is treated as a textured image. An orientation flow field of the ridges is computed for the fingerprint image. To accurately locate ridges, a new ridge orientation based computation method is proposed. After ridge segmentation a new method of computation is proposed for smoothing the ridges. The ridge skeleton image is obtained and then smoothed using morphological operators to detect the features. A post processing stage eliminates a large number of false features from the detected set of minutiae features. The detected features are observed to be reliable and accurate.Keywords: Minutia, orientation field, ridge segmentation, textured image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531227 A Perceptual Image Coding method of High Compression Rate
Authors: Fahmi Kammoun, Mohamed Salim Bouhlel
Abstract:
In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.Keywords: Contrast Sensitivity Function, Human Visual System, Image compression, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741226 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.
Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10331225 Fuzzy Mathematical Morphology approach in Image Processing
Authors: Yee Yee Htun, Dr. Khaing Khaing Aye
Abstract:
Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32471224 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591223 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681222 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model
Authors: M.Sujaritha, S. Annadurai
Abstract:
An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.
Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24981221 ORank: An Ontology Based System for Ranking Documents
Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881220 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11941219 Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis
Authors: Prasanta Kundu, N.K. Kishore, A.K. Sinha
Abstract:
Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.
Keywords: Acoustic emission, discrete wavelet transform, partial discharge, wavelet packet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29871218 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821217 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591216 Application of LSB Based Steganographic Technique for 8-bit Color Images
Authors: Mamta Juneja, Parvinder S. Sandhu, Ekta Walia
Abstract:
Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.
Keywords: Compression, Colormap, Encryption, Steganographyand LSB Insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30011215 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: Simulation, visual navigation, mobile robot, data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10491214 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.
Keywords: Image segmentation, semi-automatic, software, 3D volumetric reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44691213 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina M. R. Caridade, Ana Rita F. Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.
Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14