Search results for: Occluded Object Recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1400

Search results for: Occluded Object Recognition

920 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park

Abstract:

A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.

Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
919 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
918 Speech Recognition Using Scaly Neural Networks

Authors: Akram M. Othman, May H. Riadh

Abstract:

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
917 Combining Skin Color and Optical Flow for Computer Vision Systems

Authors: Muhammad Raza Ali, Tim Morris

Abstract:

Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.

Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
916 Testing Object-Oriented Framework Applications Using FIST2 Tool: A Case Study

Authors: Jehad Al Dallal

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., a family of products that shares the common features). Software testing is a timeconsuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications during the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. This paper introduces the Framework Interface State Transition Tester (FIST2), a tool for automated unit testing of Java framework applications. During the framework development stage, given the formal descriptions of the framework hooks, the specifications of the methods of the framework-s extensible classes, and the illegal behavior description of the Framework Interface Classes (FICs), FIST2 generates unitlevel test cases for the classes. At the framework application development stage, given the customized method specifications of the implemented FICs, FIST2 automates the use, execution, and evaluation of the already generated test cases to test the implemented FICs. The paper illustrates the use of the FIST2 tool for testing several applications that use the SalesPoint framework.

Keywords: Automated testing, class testing, FICs, FIST2, object-oriented framework, object-oriented testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
915 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics

Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra

Abstract:

Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.

Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
914 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
913 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.). 

Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
912 A Case Study of the Digital Translation of the Lucy Lloyd and Wilhelm Bleek |Xam and !Kun Notebooks into The Digital Bleek and Lloyd

Authors: F. Saptouw

Abstract:

This paper will examine the digitization process of the |Xam and !Kun notebooks, authored by Lucy Lloyd, Dorothea Bleek and Wilhelm Bleek, and their collaborators |a!kunta, ||kabbo, ≠kasin, Dia!kwain, !kweiten ta ||ken, |han≠kass'o, !nanni, Tamme, |uma, and Da during the 19th century. Detail will be provided about the status of the archive, the creation of the digital archive and selected research projects linked to the archive. The Digital Bleek and Lloyd project is an example of institutional collaboration by the University of Cape Town, University of South Africa, Iziko South African Museum, the National Library of South Africa and the Western Cape Provincial Archives and Records Service. The contemporary value of the archive will be discussed in relation to its current manifestation as a collection of archival and digital objects, each with its own set of properties and archival risk factors. This tension between the two ways to access the archive will be interrogated to shed light on the slippages between the digital object and the archival object. The primary argument is that the process of digitization generates an ontological shift in the status of the archival object. The secondary argument is an engagement with practices to curate the encounters with these ontologically shifted objects and how to relate to each as a contemporary viewer. In conclusion this paper will argue for regarding these archival objects according to the interpretive framework utilized to engage secular relics.

Keywords: Archive, curatorship, digitization, The Digital Bleek and Lloyd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
911 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: Rice disease, analysis system, mobile application, iOS operating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
910 Recognition of Isolated Speech Signals using Simplified Statistical Parameters

Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee

Abstract:

We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.

Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
909 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
908 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
907 Object Allocation with Replication in Distributed Systems

Authors: H. T. Barney, G. C. Low

Abstract:

The design of distributed systems involves dividing the system into partitions (or components) and then allocating these partitions to physical nodes. There have been several techniques proposed for both the partitioning and allocation processes. These existing techniques suffer from a number of limitations including lack of support for replication. Replication is difficult to use effectively but has the potential to greatly improve the performance of a distributed system. This paper presents a new technique technique for allocating objects in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system. The performance of the new technique is compared with the performance of an existing technique in order to demonstrate both the validity and superiority of the new technique when developing a distributed system that can utilise object replication.

Keywords: Allocation, Distributed Systems, Replication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
906 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
905 Designing an Irregular Tensegrity as a Monumental Object

Authors: Buntara Sthenly Gan

Abstract:

A novel and versatile numerical technique to solve a self-stress equilibrium state is adopted herein as a form-finding procedure for an irregular tensegrity structure. The numerical form-finding scheme of a tensegrity structure uses only the connectivity matrix and prototype tension coefficient vector as the initial guess solution. Any information on the symmetrical geometry or other predefined initial structural conditions is not necessary to get the solution in the form-finding process. An eight-node initial condition example is presented to demonstrate the efficiency and robustness of the proposed method in the form-finding of an irregular tensegrity structure. Based on the conception from the form-finding of an eight-node irregular tensegrity structure, a monumental object is designed by considering the real world situation such as self-weight, wind and earthquake loadings.

Keywords: Tensegrity, Form-finding, Design, Irregular, Self-stress, Force density method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
904 Face Reconstruction and Camera Pose Using Multi-dimensional Descent

Authors: Varin Chouvatut, Suthep Madarasmi, Mihran Tuceryan

Abstract:

This paper aims to propose a novel, robust, and simple method for obtaining a human 3D face model and camera pose (position and orientation) from a video sequence. Given a video sequence of a face recorded from an off-the-shelf digital camera, feature points used to define facial parts are tracked using the Active- Appearance Model (AAM). Then, the face-s 3D structure and camera pose of each video frame can be simultaneously calculated from the obtained point correspondences. This proposed method is primarily based on the combined approaches of Gradient Descent and Powell-s Multidimensional Minimization. Using this proposed method, temporarily occluded point including the case of self-occlusion does not pose a problem. As long as the point correspondences displayed in the video sequence have enough parallax, these missing points can still be reconstructed.

Keywords: Camera Pose, Face Reconstruction, Gradient Descent, Powell's Multidimensional Minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
903 A Decision Support Model for Bank Branch Location Selection

Authors: Nihan Cinar

Abstract:

Location selection is one of the most important decision making process which requires to consider several criteria based on the mission and the strategy. This study-s object is to provide a decision support model in order to help the bank selecting the most appropriate location for a bank-s branch considering a case study in Turkey. The object of the bank is to select the most appropriate city for opening a branch among six alternatives in the South-Eastern of Turkey. The model in this study was consisted of five main criteria which are Demographic, Socio-Economic, Sectoral Employment, Banking and Trade Potential and twenty one subcriteria which represent the bank-s mission and strategy. Because of the multi-criteria structure of the problem and the fuzziness in the comparisons of the criteria, fuzzy AHP is used and for the ranking of the alternatives, TOPSIS method is used.

Keywords: MCDM, bank branch location, fuzzy AHP, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4969
902 Performance of Histogram-Based Skin Colour Segmentation for Arms Detection in Human Motion Analysis Application

Authors: Rosalyn R. Porle, Ali Chekima, Farrah Wong, G. Sainarayanan

Abstract:

Arms detection is one of the fundamental problems in human motion analysis application. The arms are considered as the most challenging body part to be detected since its pose and speed varies in image sequences. Moreover, the arms are usually occluded with other body parts such as the head and torso. In this paper, histogram-based skin colour segmentation is proposed to detect the arms in image sequences. Six different colour spaces namely RGB, rgb, HSI, TSL, SCT and CIELAB are evaluated to determine the best colour space for this segmentation procedure. The evaluation is divided into three categories, which are single colour component, colour without luminance and colour with luminance. The performance is measured using True Positive (TP) and True Negative (TN) on 250 images with manual ground truth. The best colour is selected based on the highest TN value followed by the highest TP value.

Keywords: image colour analysis, image motion analysis, skin, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
901 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
900 Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed

Authors: Pierre-Alain Moëllic, Patrick Hède, Gr egory Grefenstette, Christophe Millet

Abstract:

Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.

Keywords: CBIR, CLIC, evaluation, image indexing and retrieval, testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
899 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels

Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.

Keywords: Data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
898 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
897 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
896 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
895 Is School Misbehavior a Decision? Implications for School Guidance

Authors: Rachel C. F. Sun

Abstract:

This study examined the predictive effects of moral competence, prosocial norms and positive behavior recognition on school misbehavior among Chinese junior secondary school students. Results of multiple regression analysis showed that students were more likely to misbehave in school when they had lower levels of moral competence and prosocial norms, and when they perceived their positive behavior being less likely recognized. Practical implications were discussed on how to guide students to make the right choices to behave appropriately in school. Implications for future research were also discussed.

Keywords: Moral competence, positive behavior recognition, prosocial norms, school misbehavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
894 Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Authors: Mangesh S. Deshpande, Raghunath S. Holambe

Abstract:

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
893 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16- 20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
892 Human Action Recognition System Based on Silhouette

Authors: S. Maheswari, P. Arockia Jansi Rani

Abstract:

Human action is recognized directly from the video sequences. The objective of this work is to recognize various human actions like run, jump, walk etc. Human action recognition requires some prior knowledge about actions namely, the motion estimation, foreground and background estimation. Region of interest (ROI) is extracted to identify the human in the frame. Then, optical flow technique is used to extract the motion vectors. Using the extracted features similarity measure based classification is done to recognize the action. From experimentations upon the Weizmann database, it is found that the proposed method offers a high accuracy.

Keywords: Background subtraction, human silhouette, optical flow, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
891 Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis

Authors: Ahmad M. Sarhan, Omar I. Al Helalat

Abstract:

In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.

Keywords: ANN, Backpropagation, Gaussian, LMS, MSE, Neuron, standard deviation, Widrow-Hoff rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017