Search results for: Fractal Features
1146 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language
Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah
Abstract:
Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.Keywords: Arabic speech recognition, MFCC, DTW, VAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40781145 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech
Authors: Panikos Heracleous
Abstract:
In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481144 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber
Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko
Abstract:
The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22731143 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila
Abstract:
An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.
Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21071142 Impact of Music on Brain Function during Mental Task using Electroencephalography
Authors: B. Geethanjali, K. Adalarasu, R. Rajsekaran
Abstract:
Music has a great effect on human body and mind; it can have a positive effect on hormone system. Objective of this study is to analysis the effect of music (carnatic, hard rock and jazz) on brain activity during mental work load using electroencephalography (EEG). Eight healthy subjects without special musical education participated in the study. EEG signals were acquired at frontal (Fz), parietal (Pz) and central (Cz) lobes of brain while listening to music at three experimental condition (rest, music without mental task and music with mental task). Spectral powers features were extracted at alpha, theta and beta brain rhythms. While listening to jazz music, the alpha and theta powers were significantly (p < 0.05) high for rest as compared to music with and without mental task in Cz. While listening to Carnatic music, the beta power was significantly (p < 0.05) high for with mental task as compared to rest and music without mental task at Cz and Fz location. This finding corroborates that attention based activities are enhanced while listening to jazz and carnatic as compare to Hard rock during mental task.Keywords: Music, Brain Function, Electroencephalography (EEG), Mental Task, Features extraction parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45061141 Development of a Real-Time Brain-Computer Interface for Interactive Robot Therapy: An Exploration of EEG and EMG Features during Hypnosis
Authors: Maryam Alimardani, Kazuo Hiraki
Abstract:
This study presents a framework for development of a new generation of therapy robots that can interact with users by monitoring their physiological and mental states. Here, we focused on one of the controversial methods of therapy, hypnotherapy. Hypnosis has shown to be useful in treatment of many clinical conditions. But, even for healthy people, it can be used as an effective technique for relaxation or enhancement of memory and concentration. Our aim is to develop a robot that collects information about user’s mental and physical states using electroencephalogram (EEG) and electromyography (EMG) signals and performs costeffective hypnosis at the comfort of user’s house. The presented framework consists of three main steps: (1) Find the EEG-correlates of mind state before, during, and after hypnosis and establish a cognitive model for state changes, (2) Develop a system that can track the changes in EEG and EMG activities in real time and determines if the user is ready for suggestion, and (3) Implement our system in a humanoid robot that will talk and conduct hypnosis on users based on their mental states. This paper presents a pilot study in regard to the first stage, detection of EEG and EMG features during hypnosis.Keywords: Hypnosis, EEG, robotherapy, brain-computer interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731140 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.
Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991139 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861138 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.
Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19751137 Morphology of Parts of the Middle Benue Trough of Nigeria from Spectral Analysis of Aeromagnetic Data (Akiri Sheet 232 and Lafia Sheet 231)
Authors: B. S. Jatau, Nandom Abu
Abstract:
Structural interpretation of aeromagnetic data and Landsat imagery over the Middle Benue Trough was carried out to determine the depth to basement, delineate the basement morphology and relief, and the structural features within the basin. The aeromagnetic and Landsat data were subjected to various image and data enhancement and transformation routines. Results of the study revealed lineaments with trend directions in the N-S, NE-SW, NWSE and E-W directions, with the NE-SW trends been dominant. The depths to basement within the trough were established to be at 1.8, 0.3 and 0.8km, as shown from the spectral analysis plot. The Source Parameter Imaging (SPI) plot generated showed the centralsouth/ eastern portion of the study area as being deeper in contrast to the western-south-west portion. The basement morphology of the trough was interpreted as having parallel sets of micro-basins which could be considered as grabens and horsts in agreement with the general features interpreted by early workers.
Keywords: Morphology, Middle Benue Trough, Spectral Analysis, Source Parameter Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40681136 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171135 Copy-Move Image Forgery Detection in Virtual Electrostatic Field
Authors: Michael Zimba, Darlison Nyirenda
Abstract:
A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.
Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161134 Juxtaposition of the Past and the Present: A Pragmatic Stylistic Analysis of the Short Story “Too Much Happiness” by Alice Munro
Authors: Inas Hussein
Abstract:
Alice Munro is a Canadian short-story writer who has been regarded as one of the greatest writers of fiction. Owing to her great contribution to fiction, she was the first Canadian woman and the only short-story writer ever to be rewarded the Nobel Prize for Literature in 2013. Her literary works include collections of short stories and one book published as a novel. Her stories concentrate on the human condition and the human relationships as seen through the lens of daily life. The setting in most of her stories is her native Canada- small towns much similar to the one where she grew up. Her writing style is not only realistic but is also characterized by autobiographical, historical and regional features. The aim of this research is to analyze one of the key stylistic devices often adopted by Munro in her fictions: the juxtaposition of the past and the present, with reference to the title story in Munro's short story collection Too Much Happiness. The story under exploration is a brief biography of the Russian Mathematician and novelist Sophia Kovalevsky (1850 – 1891), the first woman to be appointed as a professor of Mathematics at a European University in Stockholm. Thus, the story has a historical protagonist and is set on the European continent. Munro dramatizes the severe historical and cultural constraints that hindered the career of the protagonist. A pragmatic stylistic framework is being adopted and the qualitative analysis is supported by textual reference. The stylistic analysis reveals that the juxtaposition of the past and the present is one of the distinctive features that characterize the author; in a typical Munrovian manner, the protagonist often moves between the units of time: the past, the present and, sometimes, the future. Munro's style is simple and direct but cleverly constructed and densely complicated by the presence of deeper layers and stories within the story. Findings of the research reveal that the story under investigation merits reading and analyzing. It is recommended that this story and other stories by Munro are analyzed to further explore the features of her art and style.
Keywords: Alice Munro, Too Much Happiness, juxtaposition of past and present, pragmatic stylistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10301133 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems
Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler
Abstract:
The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.
Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841132 Metaphorical Perceptions of Middle School Students Regarding Computer Games
Authors: Ismail Celik, Ismail Sahin, Fetah Eren
Abstract:
The computer, among the most important inventions of the twentieth century, has become an increasingly important component in our everyday lives. Computer games also have become increasingly popular among people day-by-day, owing to their features based on realistic virtual environments, audio and visual features, and the roles they offer players. In the present study, the metaphors students have for computer games are investigated, as well as an effort to fill the gap in the literature. Students were asked to complete the sentence—‘Computer game is like/similar to….because….’— to determine the middle school students’ metaphorical images of the concept for ‘computer game’. The metaphors created by the students were grouped in six categories, based on the source of the metaphor. These categories were ordered as ‘computer game as a means of entertainment’, ‘computer game as a beneficial means’, ‘computer game as a basic need’, ‘computer game as a source of evil’, ‘computer game as a means of withdrawal’, and ‘computer game as a source of addiction’, according to the number of metaphors they included.
Keywords: Computer game, metaphor, middle school students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571131 New Features for Specific JPEG Steganalysis
Authors: Johann Barbier, Eric Filiol, Kichenakoumar Mayoura
Abstract:
We present in this paper a new approach for specific JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. Traditionally, steganographic algorithms try to preserve statistics of the DCT and of the spatial domain, but they cannot preserve both and also control the alteration of the compressed data. We have noticed a deviation of the entropy of the compressed data after a first embedding. This deviation is greater when the image is a cover medium than when the image is a stego image. To observe this deviation, we pointed out new statistic features and combined them with the Multiple Embedding Method. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. Finally, we designed a Fisher discriminant based classifier for well known steganographic algorithms, Outguess, F5 and Hide and Seek. The experiemental results we obtained show the efficiency of our classifier for these algorithms. Moreover, it is also designed to work with low embedding rates (< 10-5) and according to the avalanche criterion of RLE and Huffman compression step, its efficiency is independent of the quantity of hidden information.
Keywords: Compressed frequency domain, Fisher discriminant, specific JPEG steganalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651130 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711129 The Development and Future of Hong Kong Typography
Authors: Amic G. Ho
Abstract:
Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.
Keywords: Typography, Hong Kong, historical developments, multiple cultures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15801128 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.
Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181127 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study
Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara
Abstract:
Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231126 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.
Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371125 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.
Keywords: biometrics, euclidean classifier, feature extraction, offline signature verification, VOTING-based classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781124 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs.
Keywords: cushion, image processing, pressure mapping system, wheelchair
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6991123 An Angioplasty Intervention Simulator with a Specific Virtual Environment
Authors: G. Aloisio, L. T. De Paolis, A. De Mauro, A. Mongelli
Abstract:
One of the essential requirements of a realistic surgical simulator is to reproduce haptic sensations due to the interactions in the virtual environment. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the immersion sensation. In this paper, a prototype of a coronary stent implant simulator is present; this system allows real-time interactions with an artery by means of a specific haptic device. To improve the realism of the simulation, the building of the virtual environment is based on real patients- images and a Web Portal is used to search in the geographically remote medical centres a virtual environment with specific features in terms of pathology or anatomy. The functional architecture of the system defines several Medical Centres in which virtual environments built from the real patients- images and related metadata with specific features in terms of pathology or anatomy are stored. The searched data are downloaded from the Medical Centre to the Training Centre provided with a specific haptic device and with the software necessary both to manage the interaction in the virtual environment. After the integration of the virtual environment in the simulation system it is possible to perform training on the specific surgical procedure.Keywords: Medical Simulation, Web Portal, Virtual Reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17991122 Review and Evaluation of Trending Canonical Correlation Analyses-Based Brain-Computer Interface Methods
Authors: Bayar Shahab
Abstract:
The fast development of technology that has advanced neuroscience and human interaction with computers has enabled solutions to various problems and issues of this new era. The Brain-Computer Interface (BCI) has opened the door to several new research areas and have been able to provide solutions to critical and vital issues such as supporting a paralyzed patient to interact with the outside world, controlling a robot arm, playing games in VR with the brain, driving a wheelchair. This review presents the state-of-the-art methods and improvements of canonical correlation analyses (CCA), an SSVEP-based BCI method. These are the methods used to extract EEG signal features or, to be said differently, the features of interest that we are looking for in the EEG analyses. Each of the methods from oldest to newest has been discussed while comparing their advantages and disadvantages. This would create a great context and help researchers understand the most state-of-the-art methods available in this field, their pros and cons, and their mathematical representations and usage. This work makes a vital contribution to the existing field of study. It differs from other similar recently published works by providing the following: (1) stating most of the main methods used in this field in a hierarchical way, (2) explaining the pros and cons of each method and their performance, (3) presenting the gaps that exist at the end of each method that can improve the understanding and open doors to new researches or improvements.
Keywords: BCI, CCA, SSVEP, EEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5941121 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36641120 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.
Keywords: Data science, non-negative matrix factorization, missing data, quality of services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4571119 Pathomorphological Features of Lungs from Brown Hares Infected with Parasites
Authors: Mariana Panayotova-Pencheva, Anetka Trifonova, Vassilena Dakova
Abstract:
790 lungs from brown hares (Lepus europeus L.) from different regions of Bulgaria were investigated during the period 2009-2017. The parasitological status and pathomorphological features in the lungs were recorded. The following parasite species were established: one nematode - Protostrongylus tauricus (7.59% prevalence), one tapeworm – larva of Taenia pisiformis – Cysticercus pisiformis (3.04% prevalence) and one arthropod – larva of Linguatula serrata – Pentastomum dentatum (0.89% prevalence). Macroscopic lesions in the lungs were different depending on the causative agents. The infections with C. pisiformis and P. dentatum were attended with small, mainly superficial changes in the lungs. Protostrongylid infections were connected with different in appearance and burden macroscopic changes. In 77.7%, they were nodular, and in the rest of cases, they diffuse. The consistency of the lesions was compact. In most of the cases, alterations were grey in colour, rarely were dark-red or marble-like. In 91.7% of these cases, they were spread on the apical parts of large lung lobes. In 36.7% middle parts of the large lung lobes, and, in 26.7% small lung lobes, were also affected. The small lung lobes were never independently infected.
Keywords: Cysticercus pisiformis, Lepus europeus, lung lesions, Pentastomum dentatum, Protostrongylus tauricus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7951118 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741117 A Novel Approach for Protein Classification Using Fourier Transform
Authors: A. F. Ali, D. M. Shawky
Abstract:
Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.
Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365